<@

GI-Edition

Lecture Notes
in Informatics

Torsten Grust, Felix Naumann, Alexander
Bohm, Wolfgang Lehner, Jens Teubner,
Meike Klettke, Theo Harder, Erhard Rahm,
Andreas Heuer, Holger Meyer (Hrsg.)

Datenbanksysteme fur
Business, Technologie und
Web (BTW 2019)

4.-8. Marz 2019
Rostock

Meike Klettke, Theo Hirder, Erhard Rahm,Andreas Heuer, Holger Meyer (Hrsg.): BTW 2019

Torsten Grust, Felix Naumann,Alexander Bohm, Wolfgang Lehner, Jens Teubner,

299 Proceedings

GESELLSCHAFT
FUR INFORMATIK

Torsten Grust, Felix Naumann,
Alexander Bohm, Wolfgang Lehner,
Jens Teubner, Meike Klettke,
Theo Harder, Erhard Rahm,
Andreas Heuer, Holger Meyer (Hrsg.)

Datenbanksysteme fiir
Business, Technologie und Web
(BTW 2019)

18. Fachtagung des GI-Fachbereichs
,,Datenbanken und Informationssysteme‘ (DBIS)

4.-8. Mirz 2019
in Rostock, Deutschland

Gesellschaft fiir Informatik e. V. (GI)

Lecture Notes in Informatics (LNI) — Proceedings
Series of the Gesellschaft fiir Informatik (GI)

Volume P-289

ISBN 978-3-88579-683-1
ISSN 1617-5468

Volume Editors
Torsten Grust

Universitit Tiibingen

Lehrstuhl fiir Datenbanksysteme

72076 Tiibingen, Germany

Email: torsten.grust@uni-tuebingen.de
Felix Naumann

Hasso-Plattner-Institut Potsdam

Information Systems

14482 Potsdam, Germany

Email: felix.naumann@hpi.de
Alexander Bohm

SAP Walldorf

69190 Walldorf, Germany
Wolfgang Lehner

TU Dresden

Lehrstuhl fiir Datenbanken

01062 Dresden, Deutschland

Email: wolfgang.lehner @tu-dresden.de
Theo Hirder

TU Kaiserslautern

Fachbereich Informatik

67653 Kaiserslautern, Germany

Email: haerder @informatik.uni-kl.de
Erhard Rahm

Universitit Leipzig

Institut fiir Informatik

04109 Leipzig, Germany

Email: rahm @informatik.uni-leipzig.de
Andreas Heuer

Universitit Rostock

Lehrstuhl fiir Datenbank- und Informationssysteme

18055 Rostock, Germany

Email: ah@informatik.uni-rostock.de

torsten.grust@uni-tuebingen.de
felix.naumann@hpi.de
wolfgang.lehner@tu-dresden.de
haerder@informatik.uni-kl.de
rahm@informatik.uni-leipzig.de
ah@informatik.uni-rostock.de

Meike Klettke
Universitit Rostock
Institut fiir Informatik
18055 Rostock, Germany
Email: meike.klettke @uni-rostock.de
Holger Meyer
Universitdt Rostock
Lehrstuhl fiir Datenbank- und Informationssysteme
18055 Rostock, Germany
Email: hm@ieee.org

Series Editorial Board

Heinrich C. Mayr, Alpen-Adria-Universitit Klagenfurt, Austria
(Chairman, mayr @ifit.uni-klu.ac.at)

Torsten Brinda, Universitit Duisburg-Essen, Germany

Dieter Fellner, Technische Universitit Darmstadt, Germany

Ulrich Flegel, Infineon, Germany

Ulrich Frank, Universitit Duisburg-Essen, Germany

Michael Goedicke, Universitit Duisburg-Essen, Germany

Ralf Hofestadt, Universitit Bielefeld, Germany

Wolfgang Karl, KIT Karlsruhe, Germany

Michael Koch, Universitit der Bundeswehr Miinchen, Germany
Thomas Roth-Berghofer, University of West London, Great Britain
Peter Sanders, Karlsruher Institut fiir Technologie (KIT), Germany
Andreas Thor, HFT Leipzig, Germany

Ingo Timm, Universitit Trier, Germany

Karin Vosseberg, Hochschule Bremerhaven, Germany

Maria Wimmer, Universitit Koblenz-Landau, Germany

Dissertations

Steffen Holldobler, Technische Universitit Dresden, Germany
Thematics

Andreas Oberweis, Karlsruher Institut fiir Technologie (KIT), Germany

© Gesellschaft fiir Informatik, Bonn 2019
printed by Kéllen Druck+Verlag GmbH, Bonn

Crooy

This book is licensed under a
Creative Commons Attribution-NonCommercial 3.0 License.

meike.klettke@uni-rostock.de
hm@ieee.org

Vorwort

Die 18. Fachtagung “Datenbanksysteme fiir Business, Technologie und Web” (BTW)
des Fachbereichs “Datenbanken und Informationssysteme” (DBIS) der Gesellschaft fiir
Informatik (GI) findet vom 4. bis 8. Mirz 2019 an der Universitédt Rostock statt. Piinktlich
zu einem Multi-Jubildum besucht damit die deutsche Datenbanktagung zum ersten Mal in
ihrer Geschichte die Ostseekiiste: Stadt und Universitit Rostock feiern ein Doppeljubildum
(800 Jahre Stadt Rostock in 2018, 600 Jahre Universitdt Rostock in 2019). Daneben feiert
auch die Rostocker Informatik einige Jubilden in 2019: eine Computergrafik gibt es seit 50
Jahren an der Universitit, eine Informatik seit 35 Jahren, den Lehrstuhl Datenbank- und
Informationssysteme seit 25 Jahren.

Auf der BTW trifft sich nun auch schon seit fast 35 Jahren im zweijdhrigen Rhythmus die
deutschsprachige Datenbankgemeinde, um neue Fragestellungen zu erdrtern und aktuelle
Forschungsergebnisse zu présentieren und zu diskutieren. Nicht nur Wissenschaftler, son-
dern auch Praktiker und Anwender finden sich hier zum Wissens- und Erfahrungsaustausch
zusammen. Die BTW 2019 bietet ein wissenschaftliches Programm, ein Industriepro-
gramm, ein Demonstrationsprogramm und ein Studierendenprogramm, dazu verschiedene
Workshops und Tutorien. Zum zweiten Mal wird auf der BTW ein Wettbewerb veranstal-
tet, die sogenannte Data Science Challenge — in diesem Jahr zum aktuellen Thema
Feinstaubbelastung in Stddten.

Die Datenbanktechnologie befindet sich in einem interessanten Spannungsfeld zwischen
ihren etablierten Kernthemen — die (gliicklicherweise) wohl niemals aus der Diskussion und
den Konferenzprogrammen verschwinden werden — und neuen Fronten und Anwendungen,
die wir uns mit unserem “Datenbank-Verstand” erobern. Das zeigte sich exakt so in den
Einreichungen, die wir in diesem Jahr erhielten. Unter den insgesamt 37 Beitrdgen, die
im Scientific Track eingereicht wurden, dominieren Papiere zur Anfrageverarbeitung und
Implementationstechniken. Direkt dahinter stehen jedoch Machine Learning, Wissensman-
agement und die Verarbeitung von Nicht-Standarddatentypen. Fiinfzehn dieser Beitrige
werden im Wissenschaftlichen Programm in Rostock présentiert.

Zwolf weitere Einreichungen wurden uns im Industrial Track zugesandt. Hier findet sich
eine ganz dhnliche thematische Breite, die von “Domain Query Optimization” bis zur
Bekdmpfung von “Spam in Dating Apps” reicht. Es ist einfach nur spannend zu sehen,
welche Fortentwicklung und welchen Einsatz Datenbanksysteme in der industriellen Praxis
erfahren. Wir freuen uns auf neun Papiere, die im Industriellen Programm der BTW 2019
vorgestellt werden.

Das Gesamtprogramm der BTW ist eine Kooperation zwischen den insgesamt 231 Autoren
und den 69 Mitgliedern unserer Programm-Komitees. Letztere haben sich ausnahmslos ziigig,
kooperativ und mit Expertise den Beitridgen gestellt. Sowohl die eigentlichen Reviews, die
nachfolgende Diskussion — in diesem Jahr auch wieder auf einem der schon traditionellen
PC-Meetings in Frankfurt — als auch das Mentoring von Autoren haben geholfen, ein

Programm zu formen, auf das wir stolz sein konnen. Die PC-Chairs bedanken sich ganz
herzlich bei allen Autoren und ihren Komitees fiir die harte Arbeit auf beiden Seiten!

Der Workshopband bietet zu den drei Workshops “Novel Data Management Ideas on
Heterogeneous (Co-)Processors (NoDMC)”, “Digitale Lehre im Fach Datenbanken” und
“Big (and Small) Data in Science and Humanities” insgesamt 17 Beitrige. Daneben werden
der SPP 2037: “Scalable Data Management for Future Hardware”, das Tutorienprogramm
mit fiinf und das Studierendenprogramm mit neun Beitrigen sowie die beteiligten Gruppen
der Data Science Challenge vorgestellt. Der “BTW 2019 Workshopband” erscheint ebenfalls
in der LNI-Reihe der GI als Band 290, ISBN 978-3-88579-684-8.

Fiir das Demo-Programm der BTW wurden aus den Einreichungen 16 Beitrige ausgewihlt,
die erzielte Ergebnisse der Forschung im Bereich der Datenbank- und Informationssys-
temtechnologien auf interaktive Weise einem breiten Publikum vorzustellen. Das breite
Themenspektrum im Demo-Programm reicht von Tools zur Veranschaulichung relationaler
Algebra, Analyse von Linked Data, Efficient Data Processing, Profiling von NoSQL-
Datenbanken iiber Methods for Interactive Clustering, Graph Pattern Matching, Big Graph
Analysis bis hin zu eLearning Tools fiir Datenbankthemen. Zahlreiche Forschungsgruppen
stellen dabei ihre Arbeiten vor. Ein besonderer Schwerpunkt liegt im Demo-Programm auf
Beitrigen, in denen Datenbanktechnologien angewendet werden, etwa zu zuverlédssigen
Verspatungsvorhersagen, Precision Oncology und Movie Recommender Systemen. Alle
Beitrdge des Demo-Programms sind in diesem Tagungsband enthalten.

Im Rahmen des Hauptprogramms findet auch die Panel-Diskussion zum Thema “Daten-
banksysteme im Zeitalter von KI und Data Science* (Moderator: Volker Markl) statt.
Insbesondere wird hier geklart, welche Rolle Datenbanksysteme bei KI und Data Science
spielen und welche technologischen Herausforderungen zu 16sen sind.

Leuchttiirme des BTW-Programms an der Ostsee sind die drei eingeladenen Vortrige.
Stefanie Rinderle-Ma (Universitit Wien) wird mit “From LEGO to the Shopfloor: Driving
Digitalization Through Process Technology” gleich zu Beginn eine (LEGO-)Briicke zwis-
chen Datenbankforschung und -praxis bauen. Thab Ilyas (University of Waterloo) verkorpert
mit “Building Scalable Machine Learning Solutions for Data Cleaning” das oben erwihnte
neue, breitere Verstindnis von Datenbanktechnologie. Genau dieses unterstreichen Frank
Renkes und Christian Sommer (SAP Walldorf) mit “Blockchain in the Context of Business
Applications and Enterprise Databases” gleich nochmals.

Dieses Jahr wurden zudem zum zehnten Mal die BTW-Dissertationspreise des GI-
Fachbereichs DBIS vergeben. Die eingereichten Dissertationen aus dem Zeitraum Oktober
2016 bis September 2018 waren durchweg von hervorragender Qualitit. Auf Basis einer
umfassenden vergleichenden Begutachtung wurden drei Arbeiten fiir die Auszeichnung
ausgewdihlt: “Architectural Principles for Database Systems on Storage-Class Memory” von
Ismail Oukid (TU Dresden), “Data Profiling — Efficient Discovery of Dependencies” von

Thorsten Papenbrock (HPI Potsdam) und “Modern Techniques for transaction-oriented
Database Recovery” von Caetano Sauer (TU Kaiserslautern).

Die Informationen und Materialien zur BTW 2019 stehen iiber die Web-Seiten der Tagung
unter https://www.btw2019.de zur Verfiigung. Die Organisation der BTW-Tagung nebst
allen angeschlossenen Veranstaltungen ist nicht ohne die Unterstiitzung vieler Partner
moglich. Diese sind auf den folgenden Seiten aufgefiihrt. Zu ihnen zéhlen insbesondere alle
Sponsoren, als Ko-Veranstalter die Universitit Rostock und als Unterstiitzer das Steinbeis-
Transferzentrum DBIS an der Universitit Rostock. Organisiert wurde die BTW 2019 vom
Lehrstuhl Datenbank- und Informationssysteme der Universitidt Rostock. Insbesondere aber
gilt ein Dank der GI-Geschiftsstelle fiir die finanzielle Abwicklung der Tagung.

Vielen Dank an alle Beteiligten!

Rostock, im Januar 2019

Die Leiter des Programm-Komitees Wissenschaft:
Torsten Grust, Universitét Tiibingen
Felix Naumann, Hasso-Plattner-Institut Potsdam

Die Leiter des Programm-Komitees Industrie:
Alexander Bohm, SAP Walldorf
Wolfgang Lehner, TU Dresden

Die Leiter des Demonstrationsprogramm-Komitees:
Jens Teubner, Universitit Dortmund
Meike Klettke, Universitidt Rostock

Die Leiter des Dissertationspreis-Komitees des GI-Fachbereichs DBIS:
Theo Hérder, TU Kaiserslautern
Erhard Rahm, Universitét Leipzig

Der Leiter des Organisationskomitees:
Holger Meyer, Universitit Rostock

Die Tagungsleiter der BTW 2019:
Andreas Heuer, Universitidt Rostock
Meike Klettke, Universitit Rostock

https://www.btw2019.de

Tagungsleitung

Andreas Heuer, Universitit Rostock
Meike Klettke, Universitit Rostock

Organisationskomitee
Vorsitz: Holger Meyer, Universitidt Rostock

Tanja Auge, Universitdt Rostock
Hannes Grunert, Universitit Rostock
Andreas Heuer, Universitat Rostock
Sigrun Hoffmann, Universitit Rostock
Meike Klettke, Universitidt Rostock
Dennis Marten, Universitit Rostock
Mark Lukas Moller, Universitiat Rostock
Donald Reebs, Universitdat Rostock

Wissenschaftliches Programm
Vorsitz: Torsten Grust, Universitit Tiibingen
Felix Naumann, Hasso-Plattner-Insittut Potsdam

Ziawasch Abedjan, TU Berlin

Carsten Binnig, TU Darmstadt

Stefan Brass, Universitidt Halle-Wittenberg

Stefan Conrad, Heinrich-Heine-Universitit Diisseldorf
Stefan DeBloch, TU Kaiserslautern

Jens Dittrich, Universitit des Saarlandes

Markus Endres, Universitit Augsburg

Peter M. Fischer, Universitit Augsburg

Rainer Gemulla, Universitit Mannheim

Michael Gertz, Universitit Heidelberg

Goetz Graefe, Google

Michael Grossniklaus, Universitit Konstanz

Katja Hose, Aalborg University

Zbigniew Jerzak, SAP SE

Alfons Kemper, TU Miinchen

Georg Lausen, Universitit Freiburg

Alexander Loser, Beuth Hochschule fiir Technik Berlin
Stefan Manegold, CWI Amsterdam

Sebastian Maneth, Universitiat Bremen
Norman May, SAP SE

Sebastian Michel, Universitit Kaiserslautern
Bernhard Mitschang, Universitit Stuttgart
Wolfgang Nejdl, L3S und Universitidt Hannover
Thomas Neumann, TU Miinchen

Daniela Nicklas, Universitidt Bamberg
Tilmann Rabl, TU Berlin

Erhard Rahm, Universitit Leipzig

Stefanie Rinderle-Ma, Universitat Wien
Norbert Ritter, Universitit Hamburg

Gunter Saake, Universitit Magdeburg
Kai-Uwe Sattler, TU Ilmenau

Stefanie Scherzinger, OTH Regensburg

Ingo Schmitt, BTU Cottbus-Senftenberg
Marc H. Scholl, Universitiat Konstanz

Felix Martin Schuhknecht, Universitit des Saarlandes
Holger Schwarz, Universitit Stuttgart
Bernhard Seeger, Universitiat Marburg
Thomas Seidl, LMU Miinchen

Giinther Specht, Universitit Innsbruck

Uta Storl, Hochschule Darmstadt

Martin Theobald, Université du Luxembourg
Gottfried Vossen, ERCIS Muenster

Lena Wiese, Universitiat Miinster

Dissertationspreise
Vorsitz: Theo Hirder, TU Kaiserslautern
Erhard Rahm, Universitét Leipzig

Andreas Heuer, Universitidt Rostock
Wolfgang Lehner, TU Dresden

Bernhard Mitschang, Universitit Stuttgart
Gunter Saake, Universitdt Magdeburg
Kai-Uwe Sattler, TU Ilmenau

Thomas Seidl, LMU Miinchen

Gerhard Weikum, Universitit des Saarlandes

Industrieprogramm
Vorsitz: Alexander Bohm, SAP SE
Wolfgang Lehner, TU Dresden

Roman Dementiev, Intel GmbH

Pit Fender, Oracle Labs

Isabelle Hang, Universitit Bremen

Fisnik Kastrati, Exasol AG

Evelina Koycheva, BASF Schwarzheide GmbH
Kim-Thomas Rehmann, SAP SE

Thomas Ruf, Kynetec

Harald Schéning, Software AG

Demoprogramm
Vorsitz: Jens Teubner, TU Dortmund
Meike Klettke, Universitit Rostock

Ulf Leser, Humboldt-Universitit zu Berlin

Sebastian Bref3, Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH (DFKI)
Stefanie Scherzinger, OTH Regensburg

Ilia Petrov, Universitit Reutlingen

Stefan Manegold, CWI Amsterdam

Viktor Leis, TU Miinchen

Peter Fischer, Universitdt Augsburg

Erich Schubert, Technische Universitidt Dortmund

Gilinther Specht, Universitit Innsbruck

Externe Gutachter
Aboubakr Benabbas, Otto-Friedrich-Universitidt Bamberg
Michael Brendle, Universitit Konstanz
Golnaz Elmamooz, Otto-Friedrich-Universitdt Bamberg
Michael Farber, Universitiat Innsbruck
Nikolaus Glombiewski, Philipps Universitit Marburg
Nasr Kasrin, Otto-Friedrich-Universitidt Bamberg
Jens Lechtenborger, Universitidt Miinster
Joris Nix, Universitit des Saarlandes
Ankur Sharma, Universitit des Saarlandes

Inhaltsverzeichnis

Eingeladene Vortrage

Stefanie Rinderle-Ma
From LEGO to the Shopfloor: Driving Digitalization Through Process
Technology e

Thab Ilyas
Building Scalable Machine Learning Solutions for Data Cleaning

Frank Renkes, Christian Sommer
Blockchain in the Context of Business Applications and Enterprise Databases

Wissenschaftliche Beitrage

High-Performance Queries

Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner
Fighting the Duplicates in Hashing: Conflict Detection-aware
Vectorization of Linear Probing

Query Processing and Optimization
Bernhard Radke, Thomas Neumann
LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins

Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe
Waves of Misery After Index Creation

25

27

29

35

57

Stefan Klauck, Max Plauth, Sven Knebel, Marius Strobl, Douglas
Santry, Lars Eggert

Eliminating the Bandwidth Bottleneck of Central Query Dispatching
Through TCP Connection Hand-Over

Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas
Neumann

Ja-(zu-)SQL: Evaluation einer SQL-Skriptsprache fiir
Hauptspeicherdatenbanksysteme

Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl
On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing
Engines

Text

Cornelia Kiefer, Peter Reimann, Bernhard Mitschang
A Hybrid Information Extraction Approach Exploiting Structured Data
Within a Text Mining Process,

Christoph Lofi, Manuel Valle Torre, Mengmeng Ye
Perceptual Relational Attributes: Navigating and Discovering Shared
Perspectives from User-Generated Reviews

Graphs

Matthias Kricke, Eric Peukert, Erhard Rahm
Graph Data Transformations in Gradoop

Similarity

Jan Martin Keil
Efficient Bounded Jaro-Winkler Similarity Based Search

107

127

149

169

193

Xiao Chen, Gabriel Campero Durand, Roman Zoun, David Broneske,

Yang Li, Gunter Saake

The Best of Both Worlds: Combining Hand-Tuned and

Word-Embedding-Based Similarity Measures for Entity Resolution 215

Michael Giinther, Maik Thiele, Wolfgang Lehner
Fast Approximated Nearest Neighbor Joins For Relational Database Systems 225

Machine Learning

Maximilian Schiile, Frédéric Simonis, Thomas Heyenbrock, Alfons

Kemper, Stephan Giinnemann, Thomas Neumann

In-Database Machine Learning: Gradient Descent and Tensor Algebra for

Main Memory Database Systems 247

Matthias Boehm, Alexandre Evfimievski, Berthold Reinwald
Efficient Data-Parallel Cumulative Aggregates for Large-Scale Machine
Learning e e 267

Challenges in Data Processing

Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler
From Natural Language Questions to SPARQL Queries: A Pattern-based
Approach 289

Industriebeitrage

High-Performance Queries

Adrian Vogelsgesang, Tobias Muehlbauer, Viktor Leis, Thomas

Neumann, Alfons Kemper

Domain Query Optimization: Adapting the General-Purpose Database

System Hyper for Tableau Workloads 313

Text

Mark Reinke, André Kischkel, Volker Jahns, Uwe Crenze, Olga
Beltcheva
Einsatz kognitiver Verfahren am Deutschen Patent- und Markenamt

Database Systems in the Cloud

Tim Waizenegger, Thomas Lumpp

337

IBM Cloud Databases: Turning Open Source Databases Into Cloud Services 359

Uwe Jugel, Juan De Dios Santos, Evelyn Trautmann, Diogo Behrens

Fighting Spam in Dating Apps

Graphs

David Allen, Amy Hodler, Michael Hunger, Martin Knobloch,
William Lyon, Mark Needham, Hannes Voigt

Understanding Trolls with Efficient Analytics of Large Graphs in Neodj . .

Query Processing and Optimization

Yvonne Hegenbarth, Gerald Ristow
Konzept und Implementierung eines echtzeitfihigen Model Management
Systems — am Beispiel zur Uberwachung von Lastprognosen fiir den

Intraday Stromhandel oL o

Machine Learning

Martin Oberhofer, Lars Bremer, Mariya Chkalova
Machine Learning Applied to the Clerical Task Management Problem in

Master Data Management Systemso

377

Challenges in Data Processing

Christoph Groger, Eva Hoos
Ganzheitliches Metadatenmanagement im Data Lake: Anforderungen,
IT-Werkzeuge und Herausforderungen in der Praxis

Knut Stolze, Felix Beier, Jens Miiller
Partial Reload of Incrementally Updated Tables in Analytic Database
Accelerators e e e e e e e e

Dissertationspreise

Thorsten Papenbrock
Data Profiling — Effiziente Entdeckung Struktureller Abhdingigkeiten . . .

Ismail Oukid
Architectural Principles for Database Systems on Storage-Class Memory .

Caetano Sauer
Modern techniques for transaction-oriented database recovery

Demonstrationen

Johannes Kastner, Nemanja Ranitovic, Markus Endres
The Borda Social Choice Movie Recommender

Johannes Kessler, Michael Tschuggnall, Giinther Specht
RelaX: A Webbased Execution and Learning Tool for Relational Algebra .

Roman Zoun, Kay Schallert, David Broneske, Wolfram Fenske,
Marcus Pinnecke, Robert Heyer, Sven Brehmer, Dirk Benndorf,
Gunter Saake

MSDataStream — Connecting a Bruker Mass Spectrometer to the Internet

Daniel O’Grady
Database-Supported Video Game Engines: Data-Driven Map Generation

435

453

467

477

487

499

503

507

511

Marcus Pinnecke, Gabriel Durand Campero, Roman Zoun, David
Broneske, Gunter Saake
PrortoBask: It’s About Time for Backend/Database Co-Design

Christoph Stach, Corinna Giebler, Simone Schmidt
Zuverldssige Verspdtungsvorhersagen mithilfe von TAROT

Wolfram Wingerath, Felix Gessert, Norbert Ritter
Twoogle: Searching Twitter With MongoDB Queries

Michael Giinther, Maik Thiele, Wolfgang Lehner
Explore FREDDY: Fast Word Embeddings in Database Systems

Jurica Seva, Julian Goetze, Mario Lamping, Damian Tobias Rieke,
Reinhold Schaefer, Ulf Leser
Information Retrieval for Precision Oncology

Alexander Krause, Annett Ungethiim, Thomas Kissinger, Dirk

Habich, Wolfgang Lehner

NeMeSys — Energy Adaptive Graph Pattern Matching on NUMA-based
Multiprocessor Systems e

Thomas Lindemann, Patrick Brinkmann, Fadi Dalbah, Christian
Hakert, Philipp-Jan Honysz, Daniel Matuszczyk, Nikolas Miiller,
Alexander Schmulbach, Stefan Petyov Todorinski, Oliver Tiiselmann,
Shimon Wonsak, Jens Teubner

MAGPIE: A Scalable Data Storage System for Efficient High Volume Data
QUETIES . . . v v o e e e e e e e e e e

Daniyal Kazempour, Maksim Kazakov, Peer Kroger, Thomas Seidl
DICE: Density-based Interactive Clustering and Exploration

Stefan Hagedorn, Oliver Birli, Kai-Uwe Sattler
Processing Large Raster and Vector Data in Apache Spark

Mark Lukas Moller, Nicolas Berton, Meike Klettke, Stefanie
Scherzinger, Uta Storl
JjHound: Large-Scale Profiling of Open JSON Data

M. Ali Rostami, Eric Peukert, Moritz Wilke, Erhard Rahm
Big graph analysis by visually created workflows

Nadine Steinmetz, Ann-Katrin Arning, Kai-Uwe Sattler
When is Harry Potters birthday? — Question Answering on Linked Data . 565

Autorenverzeichnis

Eingeladene Vortrage

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 25

From LEGO to the Shopfloor: Driving Digitalization
Through Process Technology

Stefanie Rinderle-Ma!

Abstract

Processes constitute the major vehicle to support companies to move towards digital business
(models). One major application area is smart manufacturing, also referred to as Industrie
4.0. Here, processes connect and integrate machines, actors, sensors, information systems,
and business partners, collecting, processing, and exchanging production-relevant data.
This yields manifold benefits such as optimized processing and integrated data analysis.
Designing and implementing such solutions touches and raises many research challenges,
including the flexible and robust implementation of distributed process networks and
the application and extension of process-oriented data analysis methods. We illustrate
these challenges by our own journey from a LEGO-based Industrie 4.0 lab setting to the
centurio.work manufacturing orchestration suite.

Author

Univ.-Prof. Dr. Stefanie Rinderle-Ma leads the Research Group Workflow Systems and
Technology at the Faculty of Computer Science, University of Vienna, Austria. She
received her PhD and habilitation degree in Computer Science from Ulm University,
Germany where she also worked as research assistant at the Department of Databases
and Information Systems. Stefanie’s main research interests comprise distributed and
flexible process technology, process and data science, as well as compliance and
security in process-aware information systems.

1 Research Group Workflow Systems and Technology, University of Vienna, Austria, stefanie.rinderle-ma@
univie.ac.at

©@@®® doi:10.18420/btw2019-01

https://creativecommons.org/licenses/by-sa/4.0/
stefanie.rinderle-ma@univie.ac.at
stefanie.rinderle-ma@univie.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-01

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 27

Building Scalable Machine Learning Solutions for Data
Cleaning

Thab Ilyas'

Abstract

Machine learning tools promise to help solve data curation problems. While the principles
are well understood, the engineering details in configuring and deploying ML techniques are
the biggest hurdle. In this talk I discuss why leveraging data semantics and domain-specific
knowledge is key in delivering the optimizations necessary for truly scalable ML curation
solutions. The talk focuses on two main problems: (1) entity consolidation, which is arguably
the most difficult data curation challenge because it is notoriously complex and hard to scale;
and (2) using probabilistic inference to suggest data repair for identified errors and anomalies
using our new system called HoloClean. Both problems have been challenging researchers
and practitioners for decades due to the fundamentally combinatorial explosion in the space
of solutions and the lack of ground truth. There’s a large body of work on this problem
by both academia and industry. Techniques have included human curation, rules-based
systems, and automatic discovery of clusters using predefined thresholds on record similarity
Unfortunately, none of these techniques alone has been able to provide sufficient accuracy
and scalability. The talk aims at providing deeper insight into the entity consolidation and
data repair problems and discusses how machine learning, human expertise, and problem
semantics collectively can deliver a scalable, high-accuracy solution.

Author

TIhab Ilyas is a professor in the Cheriton School of Computer Science and the NSERC-
Thomson Reuters Research Chair on data quality at the University of Waterloo. His
main research focuses on the areas of big data and database systems, with special
interest in data quality and integration, managing uncertain data, rank-aware query
processing, and information extraction. Ihab is also a co-founder of Tamr, a startup
focusing on large-scale data integration and cleaning. He is a recipient of the Ontario
Early Researcher Award (2009), a Cheriton Faculty Fellowship (2013), an NSERC

! Cheriton School of Computer Science, University of Waterloo, Canada, ilyas @uwaterloo.ca

©@@®@®@ doi:10.18420/btw2019-02

https://creativecommons.org/licenses/by-sa/4.0/
ilyas@uwaterloo.ca
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-02

28 Thab Ilyas

Discovery Accelerator Award (2014), and a Google Faculty Award (2014), and
he is an ACM Distinguished Scientist. Thab is an elected member of the VLDB
Endowment board of trustees, elected SIGMOD vice , and an associate editor of
the ACM Transactions of Database Systems (TODS). He holds a PhD in computer
science from Purdue University, West Lafayette.

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 29

Blockchain in the Context of Business Applications and
Enterprise Databases

Frank Renkes! Christian Sommer!

Abstract

Blockchain seems to be the future of all cross-company business applications. Similar
to the adoption of machine learning into all novel and existing business applications and
processes we can see the same trend for blockchain. Nearly every application tries to
leverage blockchain technology to improve the application related process chains. Is this
just a hype or is blockchain really the solution to all problems, in which applications rely on
an intelligent and secure data distribution / sharing? What are the most relevant qualities
of blockchain needed in modern business applications and which role can a traditional
database play in this? Wouldn’t be an integration of some of the qualities into traditional
databases a better approach to build the so called ‘distributed business applications’? What
is the relationship and overlap between core blockchain and core database concepts like
(redo) logging, security features like auditing and encryption, distributed (query) processing,
as well as stored procedures/smart contracts?

This talk discusses how blockchain can be integrated into existing business applications and
processes, what the biggest challenges are and which role a traditional database can play in
this context.

Authors

Frank Renkes works as a Chief Architects in the HANA platform development. His focus
is on enterprise architecture in the context of customers projects using HANA as
the data management layer and on integrating novel trends and technologies into the
HANA platform.

Christian Sommer works at the SAP Innovation Center Network. As a Senior Development
Manager, he is responsible for the incubation of SAP Cloud Platform Blockchain and
its adoption in business applications.

1 SAP Walldorf, Germany

©@@®@ doi:10.18420/btw2019-03

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-03

Wissenschaftliche Beitrage

High-Performance Queries

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 35

Fighting the Duplicates in Hashing: Conflict Detection-aware
Vectorization of Linear Probing

Johannes Pietrzyk! Annett Ungethiim! Dirk Habich! Wolfgang Lehner!

Abstract: Hash tables are a core data structure in database systems, because they are fundamental for
many database operators like hash-based join and aggregation. In recent years, the efficient vectorized
implementation using SIMD (Single Instruction Multiple Data) instructions has attracted a lot of
attention. Generally, all hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected first. There are two types of collisions: (i)
key duplicates and (ii) hash value duplicates. The second type is more complicated than the first type. In
this paper, we investigate linear probing as a heavily applied hash table implementation and we present
an extension of the state-of-the-art vectorized implementation with a hardware-supported duplicate or
collision detection. For that, we use novel SIMD instructions which have been introduced with Intel’s
SIMD instruction set extension AVX-512. As we are going to show, our approach outperforms the
state-of-the-art vectorized version for the key handling, but introduces novel challenges for the value
handling. We conclude the paper with some ideas how to tackle that challenge.

Keywords: Hashing; Linear Probing; Vectorization; Conflict Detection

1 Introduction

The key objective of database systems is to reliably manage data, where high query throughput
and low query latency are still core challenges [Ab16, BFT16, Dol3, Oul7]. To satisfy
these requirements, database systems constantly adapt to novel hardware features [BKMOS].
In the recent past, we have seen numerous hardware advances, in particular with respect
to memory, processing elements, and interconnects having a huge impact on the design of
database systems [Lel7, LUH18, OL18]. For example, with growing capacities of main
memory, efficient analytical in-memory data processing becomes viable and is now state-
of-the-art [BKMOS8, Fal7] on the one hand. On the other hand, vectorization is a common
approach to improve the processing performance of CPUs by parallelizing computations
over vector registers. This vectorization is done using SIMD extensions (SIMD stands for
Single Instruction Multiple Data) such as Intel’s SSE (Streaming SIMD Extensions) or AVX
(Advanced Vector Extensions) and have been available in modern processors for several years.
SIMD instructions apply one operation to multiple elements of so-called vector registers
at once. Thus, the efficient vectorized implementation of database operations using SIMD
instructions has attracted a lot of attention in recent years [Lal6, LB15, PRR15, ZR02].

! Technische Universitit Dresden, Institut for Systems Architecture, Dresden Database Systems Group, Nothnitzer
StraBe 46, 01187 Dresden, firstname.lastname @tu-dresden.de

©@@®@®@ doi:10.18420/btw2019-04

https://creativecommons.org/licenses/by-nc/3.0/
firstname.lastname@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-04

36 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

In the past years, hardware vendors have regularly introduced new SIMD instruction
set extensions operating on ever wider registers. For instance, Intel’s Advanced Vector
Extensions (AVX) operates on vector registers of size 256 bits, while Intel’s newest extension
set AVX-512 uses now 512-bit vector registers. The wider the vector registers, the more data
elements can be stored and processed in one vector. For example, Intel’s SSE 128-bit vector
register can store four 32-bit data elements, AVX 256-bit vector can store eight (2x), and
AVX-512 512-bit vector can store 16 (4x) of such data elements. Consequently, the SIMD
instructions operating on these wider vector registers can also process 2x respectively 4x the
number of data elements in one instruction, which promises significant speedups. In [Hal8],
we investigated the influence of the wider vector registers on data compression. As we have
shown, the achieved speedups of wider vector registers are sub-optimal in most cases, since
the algorithms quickly become memory-bound when computations are accelerated through
wider vector registers processing more data elements at once. Thus, an open challenge in
this domain is the development of appropriate approaches which exploit the capabilities of
newer SIMD extensions to the maximum extent.

To tackle that challenge for lightweight data compression algorithms, we presented a novel
hardware-oriented approach in [Unl8]. The starting point of this novel approach was,
that in addition to an increased vector width of 512-bit, AVX-512 also offers a variety of
new instructions. One of the new instruction feature sets is called Conflict Detection
(AVX-512CD) which allows the vectorization of loops with possible address conflicts. Some
key features of AVX-512CD are (i) the generation of conflict free subsets, i.e. subsets which
contain no equal elements, and (ii) the count of leading zero bits of the elements in a vector.
In [Un18], we described the application of these CD instructions for run-length encoding.
In particular, we have clearly shown that the CD-based implementation is up to 3.2 times
faster for sequences of integers with short run lengths.

Our Contribution: Based on these experiences, we introduce our approach for the
application of the Conflict Detection instruction to hashing, which is completely different
from the data compression domain, in this paper. Generally, hashing is a core primitive
for many database operators such as hash-based joins and aggregations [PRR15, RAD15].
The main task of hashing is to distribute entries (key/values) across an array of buckets
(hash table). Given a key, the algorithm computes a bucket that suggests where the entry
can be found. All hash table implementations need to address what happens when collisions
occur. In order to do that, the collisions have to be detected, which sounds like a perfect
match to Conflict Detection. In particular, we evaluate linear probing as a heavily applied
hash table implementation [PRR15, RAD15]. Based on that, our main findings can be
summarized as follows:

1. Conflict Detection can be used to speedup linear probing, whereby the specific
SIMD instructions can be utilized at different positions within the hashing implemen-
tation. On the one hand, duplicate keys within one vector register can be detected to
reduce unnecessary work. On the other hand, duplicate hash values are extractable
within one vector register to reduce expensive Gather and Scatter operations.

Fighting the Duplicates in Hashing 37

2. However, the application of Conflict Detection to hashing comes at a price of
difficulty and IO-costly value handling approaches. We will elaborate that aspect in
our evaluation in more detail.

Outline of the Paper: The remainder of this paper is organized as follows: In Section 2, we
present all essential background information starting by a short description of linear probing
followed by a detailed explanation of the state-of-the-art vectorized implementation. This
section closes with a short description of new and non-standard vector instructions which
have been introduced with AVX-512. Based on that, we introduce our novel vectorized linear
probing implementation in Section 3. Then, we present selective results of our exhaustive
evaluation on two different hardware systems in Section 4. Finally, we close with related
work in Section 5 and a summary including future work in Section 6.

2 Background

Basically, hash tables are a core and a heavily-used data structure in in-memory database
systems, because they are required to efficiently execute join and aggregation opera-
tions [PRR15]. For example, in a hash join, a hash table of the smaller input relation is
built, in which the hash table entries consist of the join attribute as key and the rest as
payload [PRR15]. Once the hash table is built, the larger input relation is scanned and join
partners are looked up using the hash table. The first phase in this hash join is usually called
build phase, while the second is called probe phase.

In these hash tables, hash functions play an important role [PRR15, RAD15]. Specifically, a
hash function is used to map keys to hash table positions allowing to quickly locate the keys
in constant time. However, the domain of a hash function (the set of possible keys) is larger
than its range (the number of hash table buckets), and so it will map several keys to the
same bucket which could result in collisions. That means, all hash table implementations
need to address what happens when collisions occur. A common collision strategy is open
addressing, which allows keys to leak out from their preferred bucket and spill over into
another bucket [Be18, RAD15].

Based on that, this background section is organized as follows: In Section 2.1, we briefly
describe the general idea of linear probing. Then, we introduce the state-of-the-vectorized
implementation of linear probing as introduced in [PRR15] in Section 2.2. We close this
background section with a description of new and non-standard vector instructions which
have been introduced with Intel’s latest SIMD extension AVX-512 in Section 2.3.

2.1 Linear Probing

Linear Probing (LP) is the simplest strategy for collision handling in open-addressing.
Generally, the hash table structure for open addressing is an array 7 whose bucket T'[i] stores

38 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

Insert Key 44

l Collision!!
Bucket 0 1 2 3 4 5 6 7 8 9
Array T ‘ ‘ 41 ‘ ‘ 18 ‘ ‘ ‘ 59 ‘ ‘ ‘ ‘
T Probe array to find em@gt

Start here

Fig. 1: Illustration of Linear Probing with Collision Example.

a single key as depicted in Fig. 1. Then, an arbitrary hash function # is used to map each key
into a bucket of T where the key should be stored. A hash collision occurs when the hash
function maps a key into a bucket that is already occupied by a different key. LP resolves
this collision by placing the new key into the closest following empty bucket. That means,
for a given key x, the buckets of T are examined, beginning with the bucket at position z(x)
(where £ is the hash function) and continuing to the adjacent buckets h(x)+1, h(x)+2, ...,
until finding either an empty bucket or a bucket whose stored key equals x. An example is
given in Fig. 1. Here, key 44 shall be inserted in array bucket 3 leading to a collision. From
this bucket, the next free bucket will be used to store the key 44 in linear probing. In our
example, the next free bucket would be 4, which is then the storage bucket for this key. This
linear scan procedure (probe) is always executed for lookup as well as insertion.

LP has two excellent advantages: (i) low code complexity based on the simplicity of the
approach and (ii) very good cache efficiency due to the linear scan [RAD15]. Based on that,
we decided to use LP for our case study on applying Conflict Detection to hashing.

2.2 State-of-the-Art Vectorized Implementation of Linear Probing

To speed up the overall performance of hash tables, vectorized hash tables use a SIMD
register of width n to process multiple keys k; at once. Based on that idea, Polychroniou
et al. [PRR15] presented a vectorized version of LP. We will denote this SIMD LP
implementation as basic or state-of-the-art variant, respectively, thereby this approach
consists of several phases as illustrated in Fig. 2. The phases are repeated multiple times
until all keys are finally processed. The phases are:

Load Phase: In this phase several keys k; are loaded into a SIMD register v in each iteration.
We will denote these keys as active keys. In the first iteration, n keys are transferred
from memory to the vector register, whereby n is the size of the vector register. In
the next iterations, keys that were successfully inserted into the hash table of the
previous iterations are replaced by new keys using a selective load. This selective load
exchanges vector lanes by loading contiguous keys from unaligned memory based on
a k-bit mask.

Fighting the Duplicates in Hashing 39

Increment Offset

Invalidate Lanes

Add Value | == =
Load Hash Offset Gather Compare Handling Compare
Scatter]—{ Gather]
oad Pha a Pha ookup Pha
' s
[
) Key-Store : b
o : !
—1

Fig. 2: Control Flow of State-of-the-Art Vectorized Implementation of Linear Probing.

Hash Phase: For each active key k; within the SIMD register, the hash table bucket is
computed using a hash function / and an offset (initial state equals zero). This requires
two vector operations.

Lookup Phase: The determined buckets of the keys are used in a Gather operation to load
the current content of the hash table. The loaded keys are stored in a second SIMD
register and compared with the active keys, whereby three results are possible:

(1) Bucket is empty (loaded key is zero): There is currently no key in the hash table
bucket stored. Thus, the new key can be stored at that bucket (Store Phase) as
well as invalidated (Carry Handling Phase) and the corresponding value has to
be stored.

(2) Bucket contains the same key (Match): The key is already in the corresponding
bucket of the hash table. That means, the key can be invalidated (Carry Handling
Phase) and only the corresponding value has to be stored.

(3) Bucket contains different key (Mismatch): The hash table contains already a dif-
ferent key at that bucket. Thus, the new key can neither be stored nor invalidated
and has to remain in the vector register (Carry Handling Phase).

Store Phase: Active keys with an identified empty bucket have to be stored using a Scatter
operation. However, different keys in the vector register can have equal hash values
which would lead to a conflict. If different vector lanes are stored to the same hash
table bucket, the lane with the highest lane index remains at the specific bucket. To
detect that, the stored active keys at the buckets are gathered again and compared with
the active keys. If the gathered key equals the scattered key, the key can be invalidated
and the value has to be stored (key successfully inserted into the hash table). If the
gathered key is not equal to the scattered key, the key has to remain in the vector
register (Carry Handling Phase).

40 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

X" Read direction

4 3 2 1 0 Vector Position
‘ A ’ A ’ C ’ B ‘ A ‘ Input register

mmb512_conflict
epi32(..)

’ ‘ b4 ‘ b3 ’ b2 ’ bl ‘ b0 ‘ Output register

1
No equal previous elements - bitmasks are zero

elements elements
=A #A #A =4 =4 #4 A

fled nn b4 i ““ o3

Fig. 3: Example for the _mm512_conflict_epi32 intrinsic.

Carry Handling Phase: Successfully inserted keys which are marked as invalidated during
the whole process can be exchanged in the next iteration. Additionally, the corre-
sponding offsets are set to zero. Lanes which could not be scattered successfully
remain in the vector register and corresponding offsets are incremented one by one
for the next iteration.

This state-of-the-art vectorization uses standard and well-known SIMD operations like
Scatter, Gather, and compare functions.

2.3 Novel SIMD Instructions

The newest version of Intel’s instruction set extension for vectorization is AVX-512. In
this extension, the width of vector registers is 512-bit. That means for the state-of-the-art
vectorized LP implemention, that 16 keys (each key has a width of 32-bit) can be processed
at once in each iteration. Aside from an increased vector width, AVX-512 also offers
a variety of new instructions. One of the new instruction feature sets is called Conflict
Detection (AVX-512CD) allowing the vectorization of loops with possible address conflicts.
This instruction feature set is currently supported by Intel Xeon Phi Knights Landing (KNL)
as well as on current Xeon processors.

As already presented in [Un18], some core features of AVX-512CD are (i) the generation
of conflict free subsets, i.e. subsets which contain no equal elements (no duplicates), and
(ii) the count of leading zeros of the elements in a vector. For example, the intrinsic
_mm512_conflict_epi32 creates a vector register containing a conflict free subset of a given
source register. An example for this is shown in Fig. 3. In other words and as illustrated in
this figure, this intrinsic transforms a vector register with 16 32-bit elements (illustrated by
A, B and C) into a new vector register with 16 bitmasks (each represented by 32-bit values).
Each bitmask encodes the positions of equal previous elements in the vector. The bitmasks
for the first three elements A, B, and C are zero in our example, because there are no equal

Fighting the Duplicates in Hashing 41

_mm512_maskz ‘ ‘ ‘ A ’ c ‘ ‘ Input register
compress
-epi32(..) ‘ ‘ ‘ 0 ’ 0 ‘ ‘ Input bitmask
‘ ‘ 0 ’ 0 ’ A ‘ B ’ A ‘ Output register

Fig. 4: Example for the _mm512_maskz_compress_epi32 intrinsic.

previous elements. The A element at the third position in the input register is in conflict
(equal to) with the element at position 0 in the input register. Thus, the least significant bit
of the corresponding bitmask is set to 1, the rest of the bitmask is filled with zeros. The
element A at position 4 is in conflict with the previous elements at positions 3 and 0 (equal
to previous elements). Therefore, the corresponding bits in the bitmask are set to 1, all
other bits are zero. A second interesting CD-feature is the intrinsic _mm512_lzcnt_epi32,
which counts leading zeros. Given a vector of 16 values, this intrinsic counts the number of
leading zeros for all values at once and writes the results in a vector register with 16 values.

Another newly introduced functionality is a set of compress instructions, e.g.
_mm512_maskz_compress_epi32. They are part of the foundation instruction set of AVX512
(AVX-512F). The input of these compress instructions is a vector and a bitmask. Then, the
elements in the input vector, which are marked by the bitmask, are stored contiguously in
the output vector as depicted in Fig. 4. Using this compress instruction, the result vector
contains no reserved space of the unmarked elements in the input register.

3 CD-aware Vectorized Implementation of Linear Probing

The above presented state-of-the-art vectorized implementation of linear probing is well-
engineered, but the implementation has a major shortcoming. This shortcoming is related to
ever increasing widths of vector registers. On the one hand, with wider vector registers, more
keys can be processed simultaneously. For instance, with 128-bit wide vector registers only
4 keys, but now with 512-bit wide vector registers 16 keys are processable simultaneously.
On the other hand, with more keys in parallel, the probability of collisions within one vector
register increases for two reasons:

1. With more keys in parallel, the probability of duplicate keys within one vector register
increases the risk of collisions at the end.

2. With more keys in parallel, the probability that different keys are mapped to a single
bucket within one vector register increases the risk of collisions at the end.

Fundamentally, when more hash collisions occur in each iteration, more iterations are
needed to process all input data, because more keys have to be moved to the next iteration.
At the same time, more iterations also mean that more Gather and Scatter operations are

42 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

Carry Handling Phase

Increment Offset
Invalidate Lanes

Hash Phase
Add

Load Phase Lookup Phase
CD(kn) CD(h(kn))

I Value | »

I Handling Q :
fo R
M |

Fig. 5: Control Flow of state-of-the-art Vectorized Linear Probing using Conflict Detection.

performed leading to decreasing performance, finally. Nevertheless, this is a perfect setting
for the Conflict Detection capability as described next.

3.1 CD-aware Hash Table Data Structures

Before we introduce our Conflict Detection-aware (CD-aware) vectorized implementation
of linear probing in detail, we describe our underlying data structure. The hash table usually
has to hold a set of key/value pairs. The keys are inserted into a so-called key-store as
illustrated in Fig. 2 consisting of a fixed size number of buckets realized by an array. The
corresponding values are stored within a separate memory location (value-store). Since a
single key can exist multiple times within the given input dataset, the value-store has to
hold every value for the corresponding key. Through the assumption that the total number
of occurrences of a single key is unknown in advance, the value-store is realized as a fixed
sized array of dynamic containers.

3.2 Handling of Bucket Duplicates

To overcome the mentioned shortcoming, we add two Conflict Detection instructions to
the Hash Phase as illustrated in Fig. 5. With these instructions, the number of non-sequential
memory accesses through Gather and Scatter operations in the subsequent phases are
minimized.

The first Conflict Detection instruction CD(k,) is placed directly after the Load Phase
as highlighted in Fig. 5. If the vector register of an iteration contains duplicate keys, we

Fighting the Duplicates in Hashing 43

already know that only one lane has to be used for the further steps. Lanes containing
duplicate keys can be automatically invalidated. Since same keys can result in different
buckets through offset addition and only the left most lane remain valid, it is feasible to use
the compress intrinsic provided by AVX-512F to arrange valid lanes in a contiguous manner.
The associated values of duplicate keys have to be preserved until the key can be written to
memory. Because the total number of occurrences of a key within a given dataset is not
known without further investigations, the values are stored within a temporal dynamic sized
buffer. As a consequence, the buffer has to be resized when duplicate keys are detected.
When the key is successfully stored into the key-store, the values from the corresponding
buffer are appended to the corresponding value-store entry.

After this first Conflict Detection instruction, we are sure that the vector register contains
only unique keys, whereby already some lanes could be invalidated which limits the
exploitation of parallelization in this iteration. However, different keys in the vector register
can result in the same buckets within the key-store after the hash phase. There are two
possible reasons (i) through a pure hash collision or (ii) through the addition of the offset.
This situation also has to be detected and solved. For this detection, we use the second
Conflict Detection instruction CD(h(k,)) as shown in Fig. 5. Based on that, we know
the vector lanes with a conflicting position. But the conflicting lanes cannot be invalidated
immediately, because each of these different keys could already be in the key-store. Thus,
these keys are used in the next Lookup Phase. If an empty bucket is found, the key and its
assigned value corresponding to the first occurrence (as a result of Conflict Detection)
of the specific bucket is transferred into the hash table and the lane is invalidated. The
remaining lanes containing conflicting buckets reside in the vector register and are treated
in the Carry Handling phase.

Based on our procedure, the Store Phase can be simplified as depicted in Fig. 5. In this
Store Phase, we do not have to load the buckets again to detect conflicts, because these
conflicts are now determined during the Hash Phase. In conclusion, the amount of random
access 10-operations can be reduced by using the conflict detection intrinsic. Also duplicate
keys are substituted within the next iteration resulting in a higher degree of vector lane
utilization. Still non-valid lanes are present within a single iteration step which leads to
non-optimal data parallelism.

3.3 Handling of Key Duplicates

To address the non-optimal vector lane utilization through conflicting keys mentioned in
section 3.2, the Load phase has to be adapted as depicted in Fig. 6. Instead of executing one
load operation per iteration, contiguous keys are transferred to a vector register (vo) until the
vector contains only distinct elements. We call this approach FetchD. To avoid selective and
non-cache friendly loads in our FetchD approach, a second full buffer vector register (v;,)
is loaded at once. Then, distinct keys are identified using a conflict detection. This buffer
is then used to fill up invalidated lanes from the register containing the keys for further

44 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

Carry Handling Phase

Increment Offset
Invalidate Lanes

Hash Phase
Add Value

< B3

S

R catter
Load Phase ookup Phase | ‘
CD(h(kn))

1

1
—)
—

Fig. 6: Control Flow of the CD-aware Vectorized Implementation of Linear Probing.

processing. This is done using _mm512_maskz_compress_epi32 to organize distinct keys of
vector Vvp, in a contiguous manner. In a second step, invalidated lanes of v are substituted
with elements from the v, using _mm512_mask_expand_epi32. These two steps are repeated
until vy contains only distinct elements or all elements are processed. In regard to the values,
a similar approach as described in the section above is used. Nevertheless, the buffer vector
register needs its own temporal value buffer which is merged with the value buffer from vg
corresponding to the replaced key lanes. This leads to additional IO-operations during the
Load Phase.

In summary, the discussed concepts can be used to utilize vector registers with the maximum
amount of parallel computation on the one hand. On the other hand, organizing the values
require scalar IO-operations which can be considered to be expensive in comparison to
vectorized operations.

4 Experimental Evaluation

Before we summarize the core results of our exhaustive evaluation in Sections 4.1 and 4.2,
we briefly describe our overall evaluation setup. Basically, we used two different hardware
platforms as depicted in Tab. 1. The first platform is a Xeon Phi™ 7250 Knights Landing
(KNL), while the second is a Xeon® Gold 6130 (SKL). Both platforms provide the AVX-512
vector register extension as well as the special instruction set AVX-512CD. The cache sizes
of the KNL and SKL are the same for L1 and L2. While every core of the SKL has access
to a 22 MB dimensioned L3-Cache, the KNL has no L3-Cache. Instead, a high bandwidth
memory which is located on the chip can be used in the KNL.

Fighting the Duplicates in Hashing 45

Name Xeon Phi™ Xeon® Gold
Prozessor Model 7250 6130

Base Clock Frequency 1.4 GHz 2.1 GHz
Nodes x Cores x Threads 4x17x4 4x16x2

L1 Size 32 KB 32 KB

L2 Size 1 MB 1 MB

L3 Size - 22 MB
AVX-512 F, PF, ER, CD | F, DQ, CD, BW, VL

Tab. 1: Hardware Platform Specifications.

Furthermore, all vectorized implementations of linear probing were done in C/C++ by
ourselves, thereby we distinguish between the following implementations:

Basic: State-of-the-art vectorized implementation of linear probing as introduced
in [PRR15] (see also Section 2.2).

CDHashProbe: This is our first proposed CD-aware vectorized implementation with two
CD instructions in the Hash Phase and only a Scatter operation in the Store Phase
(see Fig. 5).

FetchD: This is our second proposed CD-aware vectorized implementation with the FetchD
approach in the Load Phase and a single CD instruction in the Hash Phase (see
Fig. 6).

FetchD-Basic: This is an enhanced state-of-the-art vectorized implementation using our
FetchD instead of a selective load in the Load Phase including a Scatter and Gather
operation in the Store Phase.

In all implementations and experiments, we used the vectorized version of Mumur3 as our
main hash function. Since in our work we focus on pushing the achieved data parallelism
for the hash build phase through vectorization to a maximum extent, we ran all experiments
single threaded. For this, we compiled all implementations with gcc (KNL: version 7.0.1,
SKL: version 7.2.0) with the optimization flags -Ofast -mavx512f -mavx512cd. We also
evaluated the novel Compress instruction of AVX-512. Unfortunately, the impact was very
marginal and therefore, we do not include this aspect in our evaluation.

4.1 Evaluation Result for Hashing without Value Handling

In our first series of experiments, we investigated linear probing without value handling
which can be used for aggregation, anti-join and exists operators in in-memory database
systems. As clearly mentioned previously, there are two possible types of collisions: (i)
bucket duplicates and (ii) key duplicates. In the following, we separately evaluate both types.

46 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

1400

1300 LFQ.5 LFQ.5 I
— 1200 LF0.6 LF0.6
g 1100 LFQ.7 = LFQ.7 =
= 1000 R — S LF0.8 B
g 200 LF0.9 C— k] LF0.9 C—
£ 800 ;’-’ Basic ——
2 700
600
500
400 © e <
2% %% o9
o O
® <
(a) KNL Runtimes
ggg 7 Lro.5 11 LFO.5
— 200 | LFo.6 1.05 LFO.c
7 200 1 LFo.7 mmmm 1 LF0.7
E oo | LFo.g === S 095 LF0.8 =
g 350 | LF0.9 b 0.9 LF0.9 1
S 300 4 2 0.85 Basic
2 250] ® o8
200 . :
150 B 0.75
100 N —— 0.7
N N
& & o o
N 5 W
(oY 2 o)
(c) SKL Runtimes (d) SKL Speedups

Fig. 7: Runtime Results and Speedups for a Key-Store with 1024KB Size and Input Data Consisting
of Unique Keys.

4.1.1 Bucket Duplicates

To evaluate the influence of bucket duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of unique keys and varied the load factor of the key store from 0.5 to 0.9 in increments of
0.1. With unique keys, we explicitly restrict ourselves to bucket duplicates and we would
expect, that our first CD-aware implementation CDHashProbe (see Fig. 5) outperforms
Basic, while our second CD-aware implementation FetchD offers too much overhead in
this case. Generally, with higher load factors of the key-store (hashmap), the number of
bucket duplicates increases leading to higer runtimes. Fig. 7(a) and (c) show runtimes for
KNL as well as SKL on a data set size consisting of unique keys and a key-store size of
1024KB, so that the key-store fits in the L2-cache on both hardware platforms. As we can
see, the runtimes for each implementation increases with increasing load factors and SKL
is faster than KNL as expected. Fig. 7(b) and (d) depict the speedups of our approaches
compared to the Basic implementation. On KNL, our CDHashProbe approach is slightly
faster than Basic in all cases. In contrast to that, our CDHashProbe only outperforms the
Basic approach on SKL for high load factors. The reason for that is that the CD instruction is
an expensive operation and this is only beneficial when the effort is less than the additional
Gather operation in Basic. Moreover, FetchD and FetchD-Basic are slower than the Basic

Fighting the Duplicates in Hashing 47

35000 LFQ.5 11 LFQ.5 I
— 30000 LFO.6 1.05 LFO.6
7)) LFQ.7 = LFQ.7 =
£ 25000 LF0.8 B2 S 1 LF0.8 B
aEJ LF0.9 C— k] 0.95 LF0.9 C—
£ 20000 a 0o Basic ——
3 .
% 15000 0.85
10000 © e <O ac 0.8 o o "
& ?‘o\oqe‘d\ 2% ‘\?‘0‘) Qe‘(’“ &
3‘5\(\ d\o \Xéf: (:(\0
fox < oY <
(a) KNL Runtimes (b) KNL Speedups
LFO.5 1.05 r LFO.5
LFO.6 . 1 LFO.6 I
A L 0.95 - 1 LFo.7 ===
£ LF0.8 == S L | LF0.8 ==
2 LF0.0 I s 09 LF0.0 I
s ;ﬁ.) 0.85 4 Basic ——
E} 0.8 .
0.75 [- .
0.7
N VY e o \C
M & o oo
ARt o @
(c) SKL Runtimes (d) SKL Speedups

Fig. 8: Runtime Results and Speedups for a Key-Store with 16MB Size and Input Data Consisting of
Unique Keys.

implementation in all cases. Of course, since we do not have key duplicates, the treatment
of this introduces additional overhead.

Fig. 8 shows the results for data sets with unique keys, a key-store size of 16MB and varying
load factors. As we can see, the same observations are also visible for higher amount of data
as well. From this set of experiments, we can conclude that our CD-aware implementation
for bucket duplicates CDHashProbe slightly outperforms the Basic approach.

4.1.2 Key Duplicates

In order to evaluate the influence of key duplicates on the runtime behaviour of the different
linear probing implementation, we generated various data sets containing different numbers
of repeating keys in sequence. Furthermore, we also varied the load factor of the key-store
from 0.5 to 0.9 in increments of 0.1. With repeating keys, we explicitly investigate the
influence of key duplicates in a best case scenario and we would expect, that our second
CD-aware implementation FetchD (see Fig. 6) outperforms the other implementations.
While Fig. 9 shows the results for KNL, Fig. 10 depicts the results for SKL. In both cases, we

48 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

Basic —+— | Basic —— | 1600 - Basic ——

700 CDHashProbe 800 CDHashProbe — 1400 + CDHashProbe —>
— 600 F. FetchD - o~ 700 £ FetchD 1 — L FetchD
¥ ooo DU — FetchD-Basic] £ 600 P, FetchD-Basic g 12000~ FetchD-Basic
= \ h—— = \ —— i = 1000 P\ ———
0 *] o 500 N\ ——— P \
£ a0 £ a0 E 800 \
€ 300 S 300 4 S 600 [
Z 20 1 2 { ? ol
100 b 100 g 200 -
o o 0 o N
12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
(a) KNL Runtimes, LF 0.6 (b) KNL Runtimes, LF 0.7 (c) KNL Runtimes, 0.9
5 T T T T T T T 5 T T T T T T T 5 T T T T T T T
Basic —+— Basic —+— Basic —+—
4 | CHashprobe — 4 | coHashprobe 4| CDHashprobe —
FetchD FetchD FetchD
S 5| Fetchp-Basic S 3| FetchD-Basic S 3| FetchD-Basic
3 3 3
& o2r & 2r & af
1 1 1
o e o M o
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Duplicates per Key #Duplicates per Key #Duplicates per Key
(d) KNL Speedups, LF 0.6 (e) KNL Speedups, LF 0.7 (c) KNL Speedups, LF 0.9

Fig. 9: KNL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

illustrate the runtimes for load factors of 0.6, 0.7, and 0.9 as well as the speedups compared
to the Basic implementation.

As we can see, the presented implementation improvements benefit from a higher amount of
duplicates within the processed data, while FetchD has the highest impact on the performance.
With increasing load factors, the speedup of our CD-aware implementations also increases
compared to the Basic implementation. For example, we can improve the performance for
data with a high number of repetitive keys up to a factor of 18 (load factor 0.9; repetition
sequence length of 100) on the KNL and up to factor a factor of 10 on the SKL. Moreover,
we observed better runtimes of all investigated scenarios (data size, number of duplicate
key, load factors) when the underlying key-store is quite small, so it can fit into small levels
of cache, but this is already well-known.

4.1.3 Intermin Conclusion

As already shown by [PRR15], the load factor should not exceed 0.6 with regard to memory
consumption and total execution time. In our previous presented evaluation results, we
always included this specific load factor for a key-store size of IMB in our considerations,
so that the key-store perfectly fits in the L2-Cache of our hardware platforms. From these
evaluations, we are able to conclude the following two aspects:

1. If the input data only consists of unique keys, our first CD-aware implementation
CDHashProbe performs slightly better than the Basic implementation.

2. However, already with a small amount of duplicate keys in the input data, our second
CD-aware improvement pays more off.

Fighting the Duplicates in Hashing 49

350 T 5 T T 350 T 5 T T 800 T T T T T s T T
— — —_
300 CoHashprobe —— | 300 CoHashprobe —— | el CDHashProbe]
T 250 FetchD @ 250 - FetchD 1 7 600 - FetchD
E FetchD-Basic E FetchD-Basic E so0 b FetchD-Basic
g 200k, g 200k E O . S
£ 150 - T £ 150 — £
2 g £ 300
& 100 & 100 2 200
50 50 100
o L 0 L o L
12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Duplicates per Key #Duplicates per Key #Duplicates per Key
(a) SKL Runtimes, LF 0.6 (b) SKL Runtimes, LF 0.7 (c) SKL Runtimes, LF 0.9
3.5 T T T T T T T 3.5 T T T T T T T 5 T T T T T T T
L Basic —— L Basic —— Basic ——
3 [CpHashProbe 3 [CpHashProbe 4 | CDHashProbe
25 F FetchD 4 25 FetchD FetchD
g | Fetchp-Basic g | Fetchp-Basic S 3| Fetchb-Basic
3 2 3 3
& 15fF " a 15 2 Lt
& : & &
1 1
05 [g 05 !
o L 0 N o
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Duplicates per Key #Duplicates per Key #Duplicates per Key
(d) SKL Speedups, LF 0.6 (e) SKL Speedups, LF 0.7 (c) SKL Speedups, LF 0.9

Fig. 10: SKL-Results for Key-Store of Size 1024KB and Varying Number of Repeating Keys.

Thus, our experiments show that using new instructions like Conflict Detection instead
of random access 1O operations can improve the total performance if actual conflicts
occur. Furthermore, the presented approach FetchD which needs additional instructions
and branches amortizes as soon as duplicate keys are within the range of a vector register
through a cache friendly access pattern and a high degree of data parallelism.

To conclude, the presented CD-aware optimization’s for linear probing can improve the
total performance if the processed data contains duplicate keys or duplicate buckets. The
influence of Conflict Detection as well as FetchD grows with higher load factors and the
amount of duplicates. This arises from the fact that without value handling, repeating keys
within vector registers are redundant and can be discarded. However if values have to be
treated, the values of repetitive keys have to be handled.

4.2 Evaluation Results for Hashing with Value Handling

To precisely evaluate our proposed value handling approach for the CD-aware implementa-
tions, we repeated all our previously introduced experiments with enabled value handling.
In particular, the value handling is important in order to execute hash joins. Fig. 11 shows
the results on the KNL as well as on the SKL hardware platform. In the depicted experiment,
we used a key-store of size 1MB, thereby we only compare the Basic with the FetchD
implementation. Through the need of dynamic temporal buffers, a growing amount of
memory re-allocations and copying for all our CD-aware implementations for value handling,
the performance of our FetchD is lower then the Basic one. As we can see, the negative
impact on the performance gets slightly better with a growing number of duplicates and a
higher load factor. Nevertheless, a more sophisticated value handling approach for FetchD
has to be found to be competitive or even better than the Basic implementation.

50 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

] AR ——) N — jr—
5 20000 [\ FetchD —— | = 20000 F \ FetchD —— | L] FecDLrOs —
£ \} g \ o
o 15000 ‘o 15000 3
£ E § 1
€ 10000 2 10000 &
s S
- x g - > 0sf
s f—y B 5000 F i]
S P S S S b v o NN
12 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Duplicates per Key #Duplicates per Key #Duplicates per Key
(d) KNL Runtimes, LF 0.6 (e) KNL Runtimes, LF 0.9 (f) KNL Speedups
6000 T T T T T T T 6000 T T T T T T T 2 T T T T T T T
I Basic —— Basic —— Basic ——
5000 f\ FetchD —=—] 5000 [FetchD —=— FetchD LF 0.6 —
I 7 1.5 FetchD LF 0.9
£ 4000 F \ E 4000 a
£ N £ : g
£ 3000 “ £ 3000 x g 1
£ £ 2
S 2000 S 2000 [" &
@ " [- " 05
1000 F b 1 1000 F T
o P o S o N
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Duplicates per Key #Duplicates per Key #Duplicates per Key
(d) SKL Runtimes, LF 0.6 (e) SKL Runtimes, LF 0.9 (f) SKL Speedups

Fig. 11: Value Handling Evaluation Results with a Key-Store of Size IMB.

5 Related Work

Fundamentally, related work in this domain is manifold, because the efficient utilization of
SIMD (Single Instruction Multiple Data) instructions in database systems is a very active
research field [Hal8, Lal6, LB15, PRR15, SWLI11, Unl8, ZR02].

For example, SIMD instructions are frequently applied in lightweight data compression
algorithms [Dal7, LB15]. In this specific domain, null suppression (NS) is the most studied
lightweight compression approach, whereby the basic idea is the omission of leading zeros in
the bit representation of integers [LB15, SGL10]. There are different techniques addressing
the efficient implementation using SIMD instructions [Dal7, LB15, SGL10]. However,
most of the vectorized implementations of lightweight data compression algorithms have
been developed for a fixed vector width of 128 bits (corresponding to Intel’s SIMD extension
SSE). In [Hal8], we systematically investigated the impact of different SIMD instruction
set extensions with vector sizes of 128-, 256-, and 512-bits on the behavior of lightweight
data compression algorithms. To obtain implementations for wider vector sizes (AVX2
and AVX-512), the 128-bit implementation can be used as foundation. In a straightforward
transformation, the 128-bit SIMD operations can be substituted by the corresponding
operations for 256 or 512-bit vectors. As we have shown, this is possible in almost all
cases, since many instructions offered by SSE are also offered by AVX2 and AVX-512 on
wider vectors. Fundamentally, two effects are observable: (i) NS algorithms working on
wider vector registers are more vulnerable to outliers in the data, which can affect both,
the compression ratio as well as the performance negatively and (ii) the speed ups are
generally sub-optimal in most cases, since the algorithms quickly become memory-bound
when the computations are accelerated through wider vector registers processing more
data elements at once. To overcome that, novel approaches are necessary. In [Un18], we
presented a novel approach for RLE encoding using Conflict Detection. Aside from our

Fighting the Duplicates in Hashing 51

work, [Lal8] introduced efficient refill algorithms for vector registers by using the latest
SIMD instruction set, AVX-512. On the other hand, SIMD instructions are also used in other
database operations like scans [LP13], aggregations [ZR02], hashing [PRR15, RAD15]
or joins [Bal3]. To best of our knowledge, none of these approaches uses AVX-512 CD,
although the operations could benefit from CD.

From a hashing perspective, the papers [PRR15], [RAD15] and [Bel8] are highly relevant.
The state-of-the-art vectorized implementation of linear probing is presented in [PRR15] as
described in Section 2. Richter et al. [RAD15] exhaustively studied a variety of common
hash table implementations—including linear probing—in a five-dimensional requirements
space: (i) data-distribution, (ii) load factor, (iii) dataset size, (iv) read/write-ratio, and (v)
un/successful-ratio. As they have shown, there exists no single best-performing hash table
implementation and each hash table implementation has its own application area. In [Be18],
the authors translated the state-of-the-art vectorized implementation of linear probing to
OpenCL with the aim to reduce code complexity and to ensure portability. For that, they
realized essential primitives like Gather, Scatter, Selective Load and Selective Store in
OpenCL. It would be interesting to see how the translation of the Conflict Detection
would look like.

6 Conclusion and Future Work

Hash tables are a core data structure in in-memory database systems, because they are
fundamental for many database operators like hash-based join and aggregation. In recent
years, the efficient vectorized implementation using SIMD (Single Instruction Multiple
Data) instructions has attracted a lot of attention. Generally, all hash table implementations
need to address what happens when collisions occur. In order to do that, the collisions have
to be detected first. There are two types of collisions: (i) key duplicates and (ii) hash value
duplicates (hash collisions). The second type is more complicated than the first type. In this
paper, we investigated linear probing as a heavily applied hash table implementation and we
presented an extension of the state-of-the-art vectorized implementation with a hardware-
supported duplicate or collision detection. For that, we use novel SIMD instructions which
have been introduced with Intel’s SIMD instruction set extension AVX-512. As we have
shown, our approach outperforms the state-of-the-art vectorized version for the key handling,
but introduces novel challenges for the value handling.

Further research should investigate different methods of value handling. The usage of
dynamic sized buffers should be replaced through a fixed sized buffer. Based on that, costly
memory reallocations and copy operations can be reduced as well as handling the values
could be done using SIMD scatter instructions. One opportunity for that would be to process
the given dataset twice, collecting statistics for the dataset within the first run. Then, this
information can be used in a further step to allocate a constant sized value store which can
hold up all values having to be inserted. As a side effect of this approach, the result of the
first run can be used further e.g., for database operators like aggregation.

52 Johannes Pietrzyk, Annett Ungethiim, Dirk Habich, Wolfgang Lehner

References

[Ab16]

[Bal3]

[Bel8]

[BFT16]

[BKMOS]

[Dal7]

[Do13]

[Fal7]

[Hal8]

[Lal6]

Abadi, Daniel; Agrawal, Rakesh; Ailamaki, Anastasia; Balazinska, Magdalena; Bernstein,
Philip A.; Carey, Michael J.; Chaudhuri, Surajit; Dean, Jeffrey; Doan, AnHai; Franklin,
Michael J.; Gehrke, Johannes; Haas, Laura M.; Halevy, Alon Y.; Hellerstein, Joseph M.;
Ioannidis, Yannis E.; Jagadish, H. V.; Kossmann, Donald; Madden, Samuel; Mehrotra,
Sharad; Milo, Tova; Naughton, Jeffrey F.; Ramakrishnan, Raghu; Markl, Volker; Olston,
Christopher; Ooi, Beng Chin; Ré, Christopher; Suciu, Dan; Stonebraker, Michael; Walter,
Todd; Widom, Jennifer: The Beckman report on database research. Commun. ACM,
59(2):92-99, 2016.

Balkesen, Cagri; Alonso, Gustavo; Teubner, Jens; Ozsu, M. Tamer: Multi-Core, Main-
Memory Joins: Sort vs. Hash Revisited. PVLDB, 7(1):85-96, 2013.

Behrens, Tobias; Rosenfeld, Viktor; Traub, Jonas; Bref3, Sebastian; Markl, Volker: Efficient
SIMD Vectorization for Hashing in OpenCL. In: Proceedings of the 21th International
Conference on Extending Database Technology, EDBT 2018, Vienna, Austria, March
26-29, 2018. pp. 489492, 2018.

BreB, Sebastian; Funke, Henning; Teubner, Jens: Robust Query Processing in Co-Processor-
accelerated Databases. In: Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016. pp. 1891-1906, 2016.

Boncz, Peter A.; Kersten, Martin L.; Manegold, Stefan: Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77-85, 2008.

Damme, Patrick; Habich, Dirk; Hildebrandt, Juliana; Lehner, Wolfgang: Lightweight
Data Compression Algorithms: An Experimental Survey (Experiments and Analyses).
In: Proceedings of the 20th International Conference on Extending Database Technology,
EDBT 2017, Venice, Italy, March 21-24, 2017. pp. 72-83, 2017.

Do, Jaeyoung; Kee, Yang-Suk; Patel, Jignesh M.; Park, Chanik; Park, Kwanghyun; DeWitt,
David J.: Query processing on smart SSDs: opportunities and challenges. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2013,
New York, NY, USA, June 22-27, 2013. pp. 1221-1230, 2013.

Faerber, Franz; Kemper, Alfons; Larson, Per-Ake; Levandoski, Justin J.; Neumann, Thomas;
Pavlo, Andrew: Main Memory Database Systems. Foundations and Trends in Databases,
8(1-2):1-130, 2017.

Habich, Dirk; Damme, Patrick; Ungethiim, Annett; Lehner, Wolfgang: Make Larger
Vector Register Sizes New Challenges?: Lessons Learned from the Area of Vectorized
Lightweight Compression Algorithms. In: Proceedings of the 7th International Workshop
on Testing Database Systems, DBTest@SIGMOD 2018, Houston, TX, USA, June 15,
2018. pp. 8:1-8:6, 2018.

Lang, Harald; Miihlbauer, Tobias; Funke, Florian; Boncz, Peter A.; Neumann, Thomas;
Kemper, Alfons: Data Blocks: Hybrid OLTP and OLAP on Compressed Storage using
both Vectorization and Compilation. In: Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 -
July 01, 2016. pp. 311-326, 2016.

Fighting the Duplicates in Hashing 53

[Lal8]

[LB15]

[Lel7]

[LP13]

[LUHI18]

[OL18]

[Oul7]

[PRRI15]

[RADI5]

[SGL10]

[SWLI11]

[Un18]

[ZR02]

Lang, Harald; Kipf, Andreas; Passing, Linnea; Boncz, Peter A.; Neumann, Thomas;
Kemper, Alfons: Make the most out of your SIMD investments: counter control flow
divergence in compiled query pipelines. In: Proceedings of the 14th International Workshop
on Data Management on New Hardware, Houston, TX, USA, June 11, 2018. pp. 5:1-5:8,
2018.

Lemire, Daniel; Boytsov, Leonid: Decoding billions of integers per second through
vectorization. Softw., Pract. Exper., 45(1):1-29, 2015.

Lehner, Wolfgang: The Data Center under your Desk - How Disruptive is Modern Hardware
for DB System Design? PVLDB, 10(12):2018-2019, 2017.

Li, Yinan; Patel, Jignesh M.: BitWeaving: fast scans for main memory data processing. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013. pp. 289-300, 2013.

Lehner, Wolfgang; Ungethiim, Annett; Habich, Dirk: Diversity of Processing Units - An
Attempt to Classify the Plethora of Modern Processing Units. Datenbank-Spektrum,
18(1):57-62, 2018.

Oukid, Ismail; Lersch, Lucas: On the Diversity of Memory and Storage Technologies.
Datenbank-Spektrum, 18(2):121-127, 2018.

Oukid, Ismail; Booss, Daniel; Lespinasse, Adrien; Lehner, Wolfgang; Willhalm, Thomas;
Gomes, Grégoire: Memory Management Techniques for Large-Scale Persistent-Main-
Memory Systems. PVLDB, 10(11):1166-1177, 2017.

Polychroniou, Orestis; Raghavan, Arun; Ross, Kenneth A.: Rethinking SIMD Vectorization
for In-Memory Databases. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4,
2015. pp. 1493-1508, 2015.

Richter, Stefan; Alvarez, Victor; Dittrich, Jens: A Seven-Dimensional Analysis of Hashing
Methods and its Implications on Query Processing. PVLDB, 9(3):96-107, 2015.

Schlegel, Benjamin; Gemulla, Rainer; Lehner, Wolfgang: Fast integer compression
using SIMD instructions. In: Proceedings of the Sixth International Workshop on
Data Management on New Hardware, DaMoN 2010, Indianapolis, IN, USA, June 7, 2010.
pp. 34-40, 2010.

Schlegel, Benjamin; Willhalm, Thomas; Lehner, Wolfgang: Fast Sorted-Set Intersection
using SIMD Instructions. In: International Workshop on Accelerating Data Management
Systems Using Modern Processor and Storage Architectures - ADMS 2011, Seattle, WA,
USA, September 2, 2011. pp. 1-8, 2011.

Ungethiim, Annett; Pietrzyk, Johannes; Damme, Patrick; Habich, Dirk; Lehner, Wolfgang:
Conflict Detection-Based Run-Length Encoding - AVX-512 CD Instruction Set in Action.
In: 34th IEEE International Conference on Data Engineering Workshops, ICDE Workshops
2018, Paris, France, April 16-20, 2018. pp. 96-101, 2018.

Zhou, Jingren; Ross, Kenneth A.: Implementing database operations using SIMD in-
structions. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, USA, June 3-6, 2002. pp. 145-156, 2002.

Query Processing and Optimization

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 57

LinDP++: Generalizing Linearized DP to Crossproducts
and Non-Inner Joins

Bernhard Radke! Thomas Neumann?

Abstract: Choosing the best join order is one of the main tasks of query optimization, as join ordering
can easily affect query execution times by large factors. Finding the optimal join order is NP-hard in
general, which means that the best known algorithms have exponential worst case complexity. As a
consequence only relatively modest problems can be solved exactly, which is a problem for today’s
large, machine generated queries. Two developments have improved the situation: If we disallow
crossproducts, graph-based DP algorithms have pushed the boundary of solvable problems to a few
dozen relations. Beyond that, the linearized DP strategy, where an optimal left-deep plan is used to
linearize the search space of a subsequent DP, has proven to work very well up to a hundred relations
or more.

However, these strategies have limitations: Graph-based DP intentionally does not consider implicit
crossproducts, which is almost always ok but sometimes undesirable, as in some cases such crossprod-
ucts are beneficial. Even more severe, linearized DP can handle neither crossproducts nor non-inner
joins, which is a serious limitation. Large queries with, e. g., outer joins are quite common and having
to fall back on simple greedy heuristics in this case is highly undesirable.

In this work we remove both limitations: First, we generalize the underlying linearization strategy to
handle non-inner joins, which allows us to linearize the search space of arbitrary queries. And second,
we explicitly recognize potential crossproduct opportunities, and expose them to the join ordering
strategies by augmenting the query graph. This results in a very generic join ordering framework that
can handle arbitrary queries and produces excellent results over the whole range of query sizes.

1 Introduction

One of the most important tasks of query optimization is join ordering. Due to the
multiplicative nature of joins, changes in join order can easily affect query execution times
by large integer factors [Lel8]. Unfortunately, finding the optimal join order is NP-hard in
general [IK84] and no exact algorithms with better than exponential worst case optimization
time are known for the general case. This is problematic because queries tend to get larger,
at least in the long tail. Today, most queries are not written by humans but by machines, and
queries that join a hundred relations or more are not that uncommon [Vo18]. To put that
into perspective, PostgreSQL for example switches from dynamic programming (DP) to a

! Technische Universitit Miinchen, radke @in.tum.de
2 Technische Universitit Miinchen, neumann @in.tum.de

@@ doi:10.18420/btw2019-05

https://creativecommons.org/licenses/by-nc/3.0/
radke@in.tum.de
neumann@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-05

58 Bernhard Radke, Thomas Neumann

heuristic if the query contains 12 relations or more, which means that none of the larger
queries will be optimized exactly.

One reason for that is their somewhat simplistic DP strategy. DP strategies that exploit the
structure of the query graph for example can handle larger queries [MNOS], but even there
the exponential nature of the problem limits query sizes to about 30 relations, depending
upon on the structure of the query graph. For even larger queries most approaches fall back
to simple heuristics. An alternative to that is the relatively recent linearized DP strategy
[NR18]. The idea is to linearize the search space by first picking a good (ideally optimal)
relative order of relations, and then use a polynomial time DP step to construct the optimal
bushy tree for that relative order. Of course we do not know the optimal order for the general
solution, but we can use the IK/KBZ algorithm [IK84, KBZ86] to construct the optimal
left-deep order in polynomial time. In practice this leads to excellent results, producing
optimal or near-optimal solutions even for large queries with very low optimization time.

However, the IK/KBZ algorithm supports only inner joins, which is a problem for practical
usage. Outer, semi, and anti joins are quite common: In the real-world workload presented
by Vogelsgesang et al. [Vol8], about 20% of the join queries do contain at least one
outer join with a maximum of 247 outer joins in a single query. Having to fall back to
simple heuristics just because the query contains a single outer join is not very satisfying.
Similar problems occur with complex predicates, for example predicates of the form
Ri{.A+ Ry.B = R3.C + R4.D. These complex predicates are rare, but they can be formulated
in SQL. In the query graph they form a hyperedge, connecting sets of relations with sets of
relations, which is also not supported by IK/KBZ. Note that non-inner joins can be expressed
by using hyperedges, too [MFE13], thus both problems are closely related from an optimizer
perspective. These restrictions are very unfortunate, as now queries with simple inner joins
can be optimized very efliciently, but adding just one non-inner join or one complex join
predicate forces the system to switch to simple heuristics, resulting in clearly inferior plans.

Furthermore, graph-based DP as well as linearized DP ignore crossproducts. Usually this is
a good idea. The search space without crossproducts is much smaller, and in most cases
crossproducts are a bad idea. However, sometimes they can indeed be helpful if some input
relations or intermediate results are known to be very small. Even then, crossproducts
should be used prudently as mis-estimations about input cardinalities can lead to terrible
execution times due to the O(n?) nature of a crossproduct. And considering crossproducts
in the presence of non-inner joins is dangerous as that can lead to wrong results. Consider
e. g. the query (A > B) b4 x=c.y C and assume B = (). Performing a crossproduct between
B and C before evaluating the outer join would cause an empty result, whereas the original
query yields the complete relation C. Nevertheless, if we make sure that a crossproduct
does not bypass non-inner joins and we are certain about the input cardinalities (e. g.
when a primary key is bound), crossproducts can sometimes significantly improve query
performance [OL90]. Having support for crossproducts in “safe” cases is thus highly
desirable.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 59

In this paper we generalize the recently published linearized DP [NR18] by removing both
limitations. Our generalized LinDP++ strategy is capable of ordering non-inner joins, which
allows it to handle all kinds of join queries. We achieve this using a recursive precedence-
graph decomposition at hyperedges, which allows IK/KBZ to handle hypergraphs. In
addition we present a fast heuristic that explicitly enriches the search space to also consider
safe crossproducts without causing the search space to grow exponentially. The combination
of these two components results in a fast polynomial time heuristic for join ordering that
finds very good plans, explicitly investigates relevant crossproducts, and handles non-inner
joins correctly. Experimental comparisons with slow exact DP strategies show that the
resulting plans are close to optimal. And the algorithm can scale to queries with a hundred
relations or more, which is far beyond what normal DP algorithms can do. For practical
usage this is a great improvement, as we no longer have to fall back to weaker approaches
for certain classes of queries.

The rest of this paper is structured as follows: First we summarize prior work in Section 2.
The extension of linearized DP to non-inner joins is described in Section 3. In Section 4
we investigate how join ordering can be extended to take beneficial crossproducts into
consideration. We evaluate runtime characteristics and result quality of LinDP++ in Section 5
before we draw a conclusion and point out directions for future research in Section 6.

2 Related Work

Join ordering has first been tackled by Selinger et al. in [Se79]. They proposed a dynamic
programming (DP) strategy that generates an optimal linear join tree. Optimal solutions
for subproblems of increasing size are built bottom up by combining optimal solutions for
smaller subproblems. Since then there has been lots of follow-up work of which we discuss
the most relevant techniques in the following.

An obvious improvement over the initial DP is to consider bushy trees as well. Furthermore,
for a DP algorithm to work it is not necessary to enumerate alternatives increasing in size.
Other enumeration schemes work as well (e. g. integer order enumeration [VM96]), as long
as optimal solutions for subproblems are generated prior to their usage in larger problems.
All of these dynamic programming variants can be implemented to consider crossproducts.
In this case, however, all possible crossproducts would implicitly be enumerated. This
results in exponential complexity of the algorithms and disregards the actual structure of the
query. In addition to this increase in complexity, crossproducts between arbitrary relations
can produce incorrect query results in the presence of outer joins.

The most efficient DP algorithms take the query graph into account. By design, such
algorithms generate only execution plans without crossproducts. With the reordering
constraints induced by outer joins encoded into the query graph, they can also validly reorder
across outer joins [MNO8]. Besides bottom-up enumeration there also exist variants that
perform the enumeration top-down, thereby enabling more aggressive pruning [FM13]. As

60 Bernhard Radke, Thomas Neumann

these algorithms strictly follow the structure of the query graph, they per se do not generate
crossproducts. crossproducts can, however, explicitly be taken into account by adding edges
to the query graph and updating the reordering constraints of outer joins.

Another approach to incorporate the reordering constraints imposed by non-inner joins
is to add compensation operators [WC18]. These operators correct errors introduced by
crossproducts across outer joins by removing or modifying spurious tuples. Materializing
these spurious tuples and manipulating them, however, creates overhead at query runtime.

Hardware trends have motivated research on parallelizing dynamic programming [HaO8].
However, linearly increasing the compute power cannot compensate for the exponential
growth of the search space. Doubling e. g. the compute power only allows queries with one
additional join to be optimized exactly in a similar, reasonable amount of time.

Lately, the use of linear programming for join ordering has been proposed [TK17]. The
mixed integer linear program (MILP) that they generate encodes relations, cardinalities,
and costs. The solution of the MILP can then be interpreted as a linear join tree. As they do
not fully constrain the MILP to the query graph, the solution may contain crossproducts.
For queries with outer joins this can again lead to invalid execution plans.

Many commercial systems find a good join order by applying transformations onto the initial
execution plan [Gr95]. These transformative approaches have the advantage that relational
equivalences can directly be translated into transformation rules. Direct application of
equivalences enables the algorithms to take care of reordering constraints as transformation
rules can be disabled as required. However, these algorithms are considerably slower than
DP style algorithms and avoiding to generate trees multiple times is non-trivial. These issues
become even more prominent if additional rules to generate crossproducts are introduced.

Besides exact algorithms that give an optimal tree, a large number of heuristics have
been proposed especially to handle large queries. One well known heuristic is the genetic
algorithm [SMK97], a variant of which is used by PostgreSQL for queries containing more
than 12 joins. The genetic meta-heuristic starts with a population of randomly generated
execution plans. For a number of generations, crossover and mutation is applied and the
best plans of the resulting population survive the generation.

Another interesting algorithm is Greedy Operator Ordering (GOO) [Fe98]. This heuristic
builds a bushy join tree bottom up by picking the pair of relations whose join result is
minimal. The picked pair is then merged into a single relation representing the join. Repeated
application of this procedure finally results in a single relation representing a complete join
tree. GOO is fast even for large queries and usually gives decent plans despite it’s greediness.

Iterative Dynamic Programming (IDP) [KS00] is a combination of DP and GOO. It has
proven to work well especially for really large queries. By using DP to refine expensive
parts of a join tree generated by a greedy algorithm, plan costs can be significantly reduced.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 61

In [NR18] we described linearized DP, a heuristic for join ordering on large queries. We
avoid the exponential complexity of a full dynamic programming strategy by restricting the
DP algorithm to a reduced, linearized search space. Utilizing this technique we bridged the
gap between the small queries which can be optimized exactly and the really large queries,
where only greedy heuristics have acceptable runtime. While this approach gives excellent
results for regular queries, its inability to handle outer joins is a major drawback which we
tackle in this paper.

3 Search Space Linearization

Dynamic Programming (DP) algorithms can be used to solve the join ordering problem
exactly, but the exponential worst case complexity of all known algorithms limits their use
to relatively small queries. The exact complexity depends upon the structure of the explored
search space: A join query Q induces an undirected query graph G = (V, E), where V is the
set of relations, and E is the set of join possibilities between relations. In the general case,
or when the query graph forms a clique, the best known algorithm has a time complexity
in O(3"), which is infeasible for large n. But when the query graphs forms a linear chain
and if crossproducts are not allowed, the optimal solution can be found in O (n?) [MNO6],
which is tractable even for large n.

This observation recently led to the concept of linearized DP [NR18]. The key idea is as
follows: Assume that we would know the optimal join order. Then we could take the relative
order of the relations in the optimal join tree and linearize the search space by restricting the
DP algorithm to consider only sub-chains of that relative order. Given the optimal relative
order as input the DP phase can construct the optimal bushy tree in O (n>) [NR18].

Of course we do not know the optimal join order, and thus we do not know the optimal
relative order, either. But for a large class of queries we can construct the optimal left-deep
tree in polynomial time using the IK/KBZ algorithm [IK84, KBZ86]. This gives us a relative
order of relations, too, which we can then use for search space linearization. Using the
IK/KBZ solutions as seed for search space linearization is a heuristic, as we can cut the
optimal solution from the search space, but 1) the resulting plan is never worse than the
optimal left-deep plan, and 2) it is usually close to the true optimal solution in practice, with
much lower optimization time [NR18]. Note that while IK/KBZ requires the cost function
to have Adjacent Sequence Interchange (ASI) property [MS79], the subsequent DP phase
can use any cost function that adheres to the bellman principle.

The main limitation of this technique is that IK/KBZ cannot handle arbitrary queries.
First, it requires an acyclic query graph. We can avoid that problem by first constructing
a minimum spanning tree before executing IK/KBZ. The intuition behind this is that less
selective joins are less likely to be part of the optimal join tree, thus dropping edges that
correspond to such joins to break cycles is usually safe. Note that the DP phase of the
algorithm can again operate on the original, complete query graph potentially including

62 Bernhard Radke, Thomas Neumann

Algorithm 1 The IKKBZ algorithm [IK84, KBZ86]
IKKBZ(Q = (V, E))

// construct an optimal left-deep tree for the acyclic query graph Q
b=0
for each s € V
P, = IKKBZ-precedence(Q, s, 0)
while P,, is not a chain
pick v/ in P, whose children are chains
IKKBZ-normalize each child chain of v/
merge the child chains by rank
ifb=0vC(Py) <C(b)
b=P,
return b

IKKBZ-precedence(Q(V, E), v, X)
// build a precedence tree by directing edges away from a node v € V
v=V
foreacheec E:(e=(v,u)Ve=Wv)Aug¢gX
add IKKBZ-precedence(Q, u, X + v) as child of P,
return P,

IKKBZ-normalize(c)
/mormalize a chain of relations
while 3i: rank(c[i])>rank(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

cycles. More severely, IK/KBZ cannot handle hyperedges in the query graph, which would
be necessary to support non-inner joins and complex join predicates. For example the join
query (A = B) ™ (C » D) will have the regular edges (A, B), (C, D), and the hyperedge
({A, B}, {C, D}), which captures the reordering constraints of inner joins and outer joins.
Note that this is a fundamental problem: The algorithm constructs left-deep trees, but that
query graph has no valid left-deep solution, all solutions must be bushy. In order to apply
the idea of search space linearization to queries with non-inner joins we must therefore
extend IK/KBZ to handle hyperedges.

In the following we first briefly repeat how regular search-space linearization works, and
then show an extension to handle hyperedges.

3.1 Regular Search Space Linearization

Before discussing the linearization for hypergraphs, let us briefly reiterate, how the
linearization of regular graphs works. The IK/KBZ algorithm [IK84, KBZ86] constructs an
optimal left-deep join tree, which is then used as relative relation order in the linearized DP.

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 63

As input the algorithm gets an acyclic query graph. For cyclic query graphs we construct a
minimum spanning tree first.

The pseudo-code for the IK/KBZ algorithm is shown in Algorithm 1. It chooses each
relation s as start node once, and then runs the complete construction algorithm given
that start node. For each s, it first constructs the directed precedence graph P, rooted in s
by directing all join edges away from s. That precedence graph indicates which relations
have to be joined first before other joins become feasible. That is, all valid join orders
adhere to the partial order induced by the precedence graph. Then the algorithm tries to sort
all relations by the cost/benefit ratio of performing the join with a relation. This ratio is
called rank [IK84]. If we get conflicts between the rank order and the order imposed by the
precedence graph, i. e., if we would like to join with R; before R,, but the precedence graph
requires that R, is joined before R;, the IKKBZ-normalize function takes both relations and
combines them into a compound relation, because we know that both must occur next to
each other in the optimal solution [IK84]. The remaining relations are ordered by rank until
we get a total order.

The traditional IK/KBZ algorithm returns the cheapest of these n total orders, which is
guaranteed to be an optimal left-deep execution plan. For the linearized DP we take the
total order and use it to restrict the search space considered by the DP phase [NR18]. Note
that we get better results by running the DP phase not only on the order in the cheapest plan,
but on all P, orders. The reason for that is that the optimal bushy order can be different
from the optimal left-deep order. The different P, orders are the optimal left-deep orders
given a certain start node; by considering all of them we give the DP algorithm a chance to
recognize orders that are more expensive left-deep but cheaper in bushy form.

3.2 Precendence for Hypergraphs

The IK/KBZ algorithm is only capable of producing linearizations for regular, acyclic
graphs. When generalizing it to handle hypergraphs we first have to construct a precedence
graph, too, which is a bit non-intuitive for hyperedges. The hyperedges have to be directed
away from the start node, but note that a hyperedge connects a set of relations with a set of
relations. To express that, a directed hyperedge is defined similar to the definition used by
Gallo et al. [GLP93]:

Definition 1. In a directed hypergraph H = (V, E), a directed edge e fromT C VtoH CV
is an ordered pair e = (T, H), where T is said to be the tail and H the head of the edge.

We differentiate two types of edges during precedence graph construction: backward
hyperedges b = (T, H) : |T| > 1 and forward hyperedges f = (T, H) : |H| > 1. Note that
an edge can be both a backward and a forward edge.

64 Bernhard Radke, Thomas Neumann

Fig. 1: A query graph with a hyperedge ({C, D}, {E})

For backward hyperedges all relations in the tail set 7 have to be available before any
relation of the head H can be joined. Such edges, thus, have to be postponed until all tail
relations are covered by the precedence graph. If all relations in T lie on a single path from
the start relation s to the last visited relation of 7 we can simply append the backward edge
to that relation, because we know that all other relations must have been joined before. If
that is not the case, i. e., if some relations lie on different paths from the start relation we
still attach the edge to the last visited relation of 7', but we mark it as partial. We cannot
statically guarantee that all relations in 7" will be available when considering the join and
must re-check that when merging child chains.

Consider for example the query graph shown in Fig. 1. When building the precedence graph
rooted in B, the backward hyperedge ({C, D}, { E}) has to be handled. If w.l.o.g D is visited
after C during construction, then E is added as a child of D. Note that E is partial here, as
it additionally requires C, which is not part of the path from B to D. All other edges are
regular and handled as in IK/KBZ which results in the precedence graph given in Fig. 2.

For forward hyperedges, all relations in the head set H must be available on the right-hand
side of the join. In particular, there exists no left-deep solution, the final solution must be
bushy and contain a join with a super-set of H on the right hand side. The key insight here
is that the query graph has to be acyclic anyways to apply IK/KBZ. Thus, if we cut the
graph at the forward hyperedge we get exactly two disconnected sub-graphs, which can be
optimized independently. We call the head of such a forward edge a group and optimize it
recursively when encountering a forward edge during precedence graph construction. Note
that the solution of a group is independent of the currently investigated start relation and can
therefore be reused across start relations. When integrating the recursive solution into the
precedence graph we could add all relations in the sub-graph as one compound relation, but
that would be overly restrictive. Instead, only the minimal subchain that covers the groups
relations is added as compound relation and the rest is kept as individual relations. Due to
the recursive nature of this scheme, individual relations here can be compound relations
from other hyperedges, of course.

An example of a precedence graph dealing with a forward hyperedge is shown in Fig. 3.
This is again a precedence graph for the query in Fig. 1, this time rooted in E. When the
forward hyperedge ({E}, {C, D}) is encountered, the group {C, D} has to be solved. The
solution of the group, which covers at least the relations B, C and D, forms a compound

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 65

D E F

Fig. 2: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in B. E is partial and
additionally requires C.

B,C,D —— A

/’
~~

F

E

Fig. 3: Generalized precedence hypergraph of the graph shown in Fig. 1 rooted in E. {B, C, D}, the
compound solution to the group of the forward hyperedge ({E}, {C, D}) is appended to E

node and is appended as child of E. Note that the solution to {C, D} would additionally
include A if rank(A) < max(rank(B), rank(C), rank(D)).

If an edge is both, a backward and a forward hyperedge, both strategies are combined:
Application of the edge has to be postponed until the complete tail is available and the
solution for the head group must be inserted when the tail is completely included.

3.3 Linearization using Precedence Hypergraphs

Using the generalized precedence graph we can now run a modified IK/KBZ algorithm
to find a linearization. Similar to the original IK/KBZ algorithm, this is achieved by
merging the nodes in subchains ascending in their rank. One difference is that nodes might
already be compound relations (if forward-edges are encountered), but that does not require
code changes. Backward edges are more difficult, as they have to be recognized during
normalization: A sequence AB must not be normalized if B is partial, as this would prevent
interleaving other nodes that are required by B between A and B. Instead, the nodes are kept
separate in the precedence graph. The rank in the subchain of B is no longer monotonic
here, which requires some care during implementation, but in practice B is merged as soon
as possible after A.

The modifications to IK/KBZ making it hypergraph aware are given in Algorithm 2, where
IKKBZ-precedence is called as IKKBZ-precedence(Q, 0, {s}, 0) for each start node s.

As an example, let us now linearize the search space of the query depicted in Fig. 1 for
start relation E (cardinalities and selectivities are given in Tab. 1). The algorithm starts

66 Bernhard Radke, Thomas Neumann

Algorithm 2 IKKBZ procedures generalized to hypergraphs

IKKBZ-solve-group(Q(V, E), I, G, X)
/l solve a group G
if |G| = 1 return G
if memoized(G) return memoized(G)
b=0
for each s € G
P, = IKKBZ-precedence(Q, 0, s, X U I + s)
while P,, is not a chain
pick v/ in P, whose children are chains
IKKBZ-normalize each child chain of v’
merge the child chains by rank
ifb=0vC(P,) <C(b)
b=P,
r = smallest subsequence of b that covers all g € G
memoize r as solution for G
return r

IKKBZ-precedence(Q(V, E), I, G, X)
// build a precedence tree by directing edges away from a node representing the group G
P, = IKKBZ-solve-group((V - (GU X),E),I,G,X U I)
mark all nodes in P,,
foreachec E:(e= (U, W)ve=W,U)ANUZCP,AVYweW: :w¢gX
if Alu € U : —isMarked(u) add IKKBZ-precedence(Q, U, W, X + U) as child of P,
else postpone e
for each postponed edge (e = (U,W)Ve= (W, U)) ANw e W :w ¢ X AVu € U :isMarked(u)
add IKKBZ-precedence(Q, U, W, X + U) as child of P,
return P,

IKKBZ-normalize(c)
/mormalize a chain of relations
while 3i: rank(c[i])>rank(c[i + 1]) A—isPartial(c[i + 1])
merge c[i] and c[i + 1] into a compound relation

building the precedence graph at the start relation £ and directs all edges away from E. This
is immediately possible for the edge (E, F'). The forward hyperedge ({E}, {C, D}) however,
requires to solve the group {C, D} first. This is done by recursively linearizing the precedence
graphs for the subgraph covering {A, B, C, D} rooted in C respectively D. Those precedence
graphs, annotated with ranks and their respective linearizations are depicted in Fig 5. After
cost comparison, CBDA is selected as the best solution for the group, from which the
algorithm picks the subchain CBD. The intermediate result of CBD has a cardinality of
200 which gives a rank of 199/200 for the group solution. Finally, the edge (B, A) is again
regular and A is simply added as child of the compound node B, C, D. This completes the
construction of the precedence graph which is depicted with annotated ranks in Fig. 4a.

The second phase of the algorithm then builds a total order of relations based on this

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 67

Relations Cardinality Joinedge Selectivity

‘g }88 (A,B) 0.4
c s (B,C) 0.02
D P (B,D) 0.04
({C,D}.E) 0.01
E 100 ED 05
F 120 ’ :

Tab. 1: Cardinalities and selectivities for the example query (Fig. 1)

199 /00 340 7999 [3200
B,C,D —— A B,C,D, A
. . /
\ *fe0 \ /50
F F
(a) initial (b) normalized

Fig. 4: The initial global precedence graph rooted in E for the example query in Fig. 1 and its
normalization. Ranks are annotated in blue.

a0 340
A A
' / 3 /
C ——8B D———B
\ s \ 0
D C
(a) rooted in C, linearization CBD A (b) rooted in D, linearization DBCA

Fig. 5: Sub-precedence graphs when solving group {C, D} rooted in C respectively D. Ranks are
annotated in blue.

precedence graph. The algorithm descends into the tree until it encounters a node whose
children are chains, which is immediately the case for the root node E. Before merging
the child chains into a total order, any contradictory sequences UV within the chains are
normalized if V is not partial. In the example, there is a contradictory sequence between
the compound relation BCD and A. These two nodes are normalized into a compound
node and the new rank computed accordingly (see Fig. 4b). After this normalization step
all contradictions are resolved and the algorithm continues with merging the children of
E. This results in the linearization ECBDAF. Based on this linearized search space, the
polynomial time DP algorithm finally constructs the logical execution plan depicted in
Fig. 6. Overall, the algorithm would build execution plans based on all linearizations for the
different start relations and select the one with the lowest cost.

Using this modified IK/KBZ algorithm we can now linearize the search space of arbitrary

68 Bernhard Radke, Thomas Neumann

>

e

>

7
>
N
>
VRN
> D
VRN
c B

Fig. 6: Logical execution plan based on the linearization ECBDAF

queries, including queries with non-inner joins and complex join predicates. If the query
becomes too large for the DP step (for example more than 100 or 150 relations, depending
on the available hardware) we can fall back to an iterative dynamic programming strategy
using LinDP++ as inner algorithm, as discussed in [NR18].

4 Considering Potentially Beneficial Crossproducts

Having introduced a technique to handle non-inner joins in the previous section we now
turn our attention onto the usefulness of crossproducts. Usually, when a join ordering
algorithm does consider crossproducts, it considers all of them. Unfortunately this increases
the search space dramatically, and increases the optimization time to O(3"), regardless of
the structure of the query graph. And most of these considered crossproducts will be useless:
A crossproduct L X R is inherently a O(|L||R|) operation, while a hash join can be executed
ideally in linear time. Which means that crossproducts are only attractive if at least one of its
inputs is reasonably small. On the other hand crossproducts can sometimes be used to avoid
repeated joins with large relations (by building the crossproduct of small relations first). We
would like to capture this (rare, but useful) use case, without paying the exponential costs of
considering all crossproducts. In this section we therefore introduce a cheap heuristic to
detect potentially beneficial crossproducts. We use that information to make them explicit
in the query graph: If a crossproduct between R; and R; is considered beneficial we add an
artificial crossproduct edge with selectivity 1 between R and R; to the query graph. The
DP phase of LinDP++ will consider this edge during plan construction and will utilize the
crossproduct if beneficial. Note that the heuristic itself is not tied to LinDP++, it could be
used by any query graph based optimization algorithm, like, for example, DPhyp.

When finding crossproduct candidates we have two problems: First, finding good candidates
has to be reasonably cheap, and second, we must be careful in the presence of non-inner
joins, as adding crossproducts there can lead to wrong results. For example in the query
R > (Ry ™ R3 4 R4) we must not introduce a crossproduct between R; and R4, but we
could introduce a crossproduct between R, and R4. We solve that problem by analyzing
the paths between two relations: We only consider crossproducts between two relations R;

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 69

and R; if there exists a path of regular (i. e., inner join) edges between them. This avoids
bypassing non-inner joins with crossproducts.

Intuitively, a crossproduct is potentially beneficial if it allows to cheaply bypass a sequence
of expensive join operations. Analyzing all paths between all pairs of relations is com-
putationally expensive and not feasible in practice. However, restricting the analysis to
paths of length two gives polynomial optimization time and still catches many cases where
a crossproduct could result in a better plan: For a query Q we investigate all pairs of
neighboring edges e; = (4,v) € Q and e; = (v, w) € Q. We augment Q with an artificial
crossproduct edge (v, w) of selectivity 1 if the cardinality of the crossproduct |u X w| is less
than the result sizes of both of the joins:

lu X w| <|uxv|Aluxw|<|vw|

For the C,,,; cost function [CM95] this criterion gives all potentially beneficial crossproducts
to bypass paths of length two while still keeping optimization complexity reasonable. Of
course there could be even longer paths where bypassing joins via crossproducts would
result in cheaper plans. Our experimental evaluation (Section 5), however suggests, that
investigating paths of length two covers most of the important crossproducts, and has
negligible overhead. If one wants to be more aggressive with crossproducts we could
consider even longer paths if the relations are particular small (for example a single tuple).
But this leads to diminishing return compared to the optimization time, which is why we
used only paths of length two in our experiments.

Note that crossproducts should be introduced very conservatively, especially if cardinality
estimates are inaccurate. A crossproduct is inherently quadratic in nature, and if an input
relation has estimated cardinality of 1 and a real cardinality of 10,000 (which can easily
happen in practice), the performance impact will be disastrous. On the other hand the
cardinality is sometimes known exactly, for example if the primary key is bound or if the
input is the result of a group-by query with known group count, which makes the introduction
safe. For base tables the available statistics can sometimes provide reasonably tight upper
bounds for the input size, which also makes the computation safe if the upper bound is
used in the formula above. This essential prudence reduces the number of cases where we
will consider crossproducts, but nevertheless there remain queries where crossproducts are
attractive and safe, and we can and should consider them during join tree construction.

Consider for example the query graph with cardinalities and selectivities given in Fig. 7a.
The optimal execution plan without crossproducts for this query has costs of 1.84M and is
depicted in Fig. 8a. When applying the crossproduct heuristic, the query graph is augmented
with two additional edges (A, C) and (D, F') as shown in Fig. 7b. While these two additional
edges only marginally enlarge the search space, costs are cut by almost 50% to 0.94M using
the plan shown in Fig. 8b. Note that even considering all possible crossproducts, although a
much larger search space is explored, does not uncover a cheaper plan. Further note that
LinDP++ generates the same plan, despite exploring a reduced, linearized search space.

70 Bernhard Radke, Thomas Neumann

5 30 5 30
A D A D

IMB — EIM IMB — EIM

10 20 10 20

(a) original (b) augmented

Fig. 7: Query graph where crossproducts enable cheaper execution plans. Cardinalities are annotated
in blue, join selectivities in green.

>4
b — T~ C b
b — T~ b bd — T~ b
PN 7N PN PN
A B _ > ~ D B P X ~ E P X \
E F A C F D
(a) original query (Cost: 1.84M) (b) augmented query (Cost: 0.94M)

Fig. 8: Optimal execution plans for the query graphs depicted in Fig. 7

5 Evaluation

In this section we present the results of an extensive experimental analysis of the techniques
described in this paper. We compare LinDP++ against a multitude of different join ordering
algorithms including DPhyp [MNOS8], Greedy Operator Ordering (GOO) [Fe98], Iterative
Dynamic Programming [KS00] using DPhyp as inner algorithm, Quickpick [WPO0O],
genetic algorithms [SMKO97], query simplification [Ne09], minsel [Sw89], and linearized
DP [NR18]. The algorithms were used to optimize the queries of the following well
known standard benchmarks using the C,,; [CM95] cost function: TPC-H [Tral7b] and
TPC-DS [Tral7a], LDBC BI [An14], the Join Order Benchmark (JOB) [Lel8], and the
SQLite test suite [Hil5].

The query graphs of the standard benchmark queries unfortunately contain only a small
number of hyperedges, most of them do not contain any hyperedges at all. Furthermore,
the queries are fairly small and can all easily be optimized by a full hypergraph based DP
algorithm [NR18]. Nevertheless, large queries with outer joins are a reality we have to
deal with [Vo18]. To thoroughly assess our approach also for larger queries with non-inner
joins we thus additionally evaluate LinDP++ on a synthetic workload of large randomly
generated queries. We use the same set of tree queries used in [NR18] which was generated
using the procedure described in [Ne09]. The set contains 100 different random queries
per size class. Sizes range from 10 to 100 relations per query, which gives a total of 1,000
queries. Hyperedges are introduced to the queries by randomly adding artificial reordering

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 71

Algorithm TPC-H TPC-DS LDBC JOB SQLite

DPhyp 0.4 90 1.2 227 2.2K
GOO 0.8 9.5 22 137 61
linearized DP 1.4 18.7 44 334 4.7K
LinDP++ 1.6 19.9 44 36.2 4.7K

Tab. 2: Total optimization time (ms) for standard benchmarks

constraints between neighboring joins. All algorithms were ran single-threaded with a
timeout of 60 seconds on a 4 socket Intel Xeon E7-4870 v2 at a clock rate of 2.3 GHz
with 1 TB of main memory attached. When comparing the quality of the plans for a query
generated by different algorithms we report normalized costs, i. e. the factor by which a
plan is more expensive than the best plan found by any of the algorithms.

5.1 Hypergraph Handling

The algorithm described in this paper targets query sizes far beyond what exact algorithms
with exponential runtime can solve in a reasonable amount of time. Thus we start by
analyzing the runtime characteristics of LinDP++.

For completeness reasons we first report numbers for all considered standard benchmarks
even though their queries are all rather small and a full graph based DP would be the
algorithm of choice here. In Tab. 2 we summarize optimization time of DPhyp, GOO,
linearizedDP, and LinDP++ for all considered benchmarks. Most of the queries are optimized
almost instantly and optimization times of LinDP++ are comparable to those of linearized
DP. The only benchmark where optimization time becomes noticeable is the SQLite test
suite, which contains more than 700 queries on up to 64 relations. But even the largest query
of the SQLite test suite is optimized by LinDP++ in 27ms. Regarding the quality of the plans
generated by LinDP++: 93% of the plans are indeed optimal, 6% of them are suboptimal by
at most a factor of 2 and only 10 of the 1159 execution plans are worse than that. Note: we
compare plans to the best plan found when considering all valid crossproducts here.

Once queries become more complex and exact optimization becomes infeasible, search
space linearization helps to keep optimization times reasonable. With LinDP++ we are now
able to linearize the search space of queries with non-inner joins, a class of queries that could
not be handled by linearized DP. To see whether this ability to linearize hypergraph queries
comes at the expense of optimization performance we compare linearized DP on regular
queries with LinDP++ on hypergraph queries with the same number of relations. Figure 9
shows median, minimum and maximum optimization time per size class for linearized DP
and LinDP++. The overhead incurred by hypergraph handling is negligible and LinDP++ is
just as well able to optimize queries on 100 relations within 100ms on average.

72 Bernhard Radke, Thomas Neumann

120
@ 90+
E
Q .
E Algorithm
'_
5 60 linearized DP
g — LinDP++
£
& 301

O-

10 20 30 40 50 60 70 8 90 100
Query Size (number of relations)
Fig. 9: Median optimization times for LinDP++ on hypergraph queries compared to linearized DP

on regular graph queries for queries on up to 100 relations. The error bars indicate minimum and
maximum optimization time per size class.

LinDP++ linearized DP (fallback to GOO/DPhyp)
104 95th percentile .

75th percentile
T 50th percentile
w 25th percentile 1t o o
3 5th percentile
o -_—
S -
2
173
S 3 .
© L[]
(5]
N —
i L]
g . . 1 . ° ——
S o ¢ —— |
Flliiri il

L4 L)
1] l l;h_'t.l._g... I e o W X

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

Fig. 10: Distribution of normalized costs of LinDP++ plans compared to the plans the hypergraph
aware greedy GOO/DPhyp fallback of linearized DP generates for queries on up to 100 relations.

The original adaptive optimization framework [NR18] had to fall back to the greedy
iterative DP with DPhyp as hypergraph aware inner algorithm (GOO/DPhyp) for large
queries with non-inner joins. Depending on the structure of the query graph, this could
already be the case for hypergraph queries touching as few as 14 relations. Using the
generalized LinDP++ technique we can avoid the greediness for these queries and generate
significantly better plans. Figure 10 compares the normalized costs of the plans generated by
LinDP++ with the ones GOO/DPhyp generates for the synthetic workload with hyperedges.
On average, plan costs are within 2% of the best plan and 814 plans are indeed the best
known plans for their respective query and normalized costs of 123 plans are within 10% of

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 73

1.00+ - - - J_

0.754

Crossproducts
0.50 4 all

. E heuristic

0.25 95th
75th A4
50th ' .
25th .
5th

0.00 4

costs normalized to opt. plan w/o cross

TPC-H TPC-DS LDBC JOB saLite
Benchmark

Fig. 11: Normalized costs of plans when either all valid crossproducts or some explicit crossproduct
edges as suggested by the heuristic are considered. Costs are normalized to the optimal plan without
crossproducts.

the best. The remaining execution plans have normalized costs below 2 with the exception
of one query, for which the plan is 2.4 times as expensive as the best known plan. In contrast
to that, 139 plans generated by GOO/DPhyp already have normalized cost worse than 2 and
costs of 54 plans are worse than the best plan by a factor of 10 or more.

5.2 Crossproduct Benefits

Investigating the effectiveness of the crossproduct heuristic described in Section 4 on the
queries of the standard benchmarks shows that crossproducts can indeed improve execution
plans. Figure 11 summarizes the costs of plans normalized to the optimal plan without
crossproducts. We compare these normalized costs when considering all crossproducts
with those when considering only the crossproducts suggested by our heuristic. On
average, introducing crossproduct edges improves plan cost by up to 18%, depending on
the benchmark. Nevertheless, 90% of the execution plans remain the same even when
considering all valid crossproducts. This confirms our statement, that the vast majority of
possible crossproducts is irrelevant and should not be considered. However, while plan
improvements are minimal for most queries, a maximum cost reduction of a factor of 14.4
reconfirms the claim of Ono and Lohman [OL90], that some crossproducts can significantly
improve plan quality. The figure also shows, that our simple heuristic indeed already covers
many of the relevant crossproducts. Only the Join Order Benchmark would benefit from
additional crossproducts that bypass larger chains of joins (mostly of length 3). Extensively
investigating all crossproduct possibilities during join ordering is thus neither required to
get good plans nor feasible in terms of optimization complexity.

74 Bernhard Radke, Thomas Neumann

g 1007 - - . =

Q °

o

Q

-

2075

kS .

= . Crossproducts
Q.

o 0.50 DPhyp
B . Ee3 LinDP-++
3

E

o

c

@

172

o

[$]

0.25 95th
75th A4
50th ' .
25th .
5th

0.00 4

TPC-H TPC-DS LDBC JOB saLite
Benchmark

Fig. 12: Normalized costs of plans generated by LinDP++ compared to the optimal plans with
some crossproducts as suggested by the heuristic. Costs are normalized to the optimal plan without
crossproducts.

crossproducts are never considered during the linearization phase of LinDP++, as they
are eliminated when removing cycles from the query graph. However, even though they
are ignored by the first phase, the second phase does consider them and plan costs are
reduced almost as much as with a full DP algorithm. Figure 12 shows the differences in cost
improvements comparing LinDP++ against full DPhyp, both operating on the augmented
query graph. Despite the reduced search space, which gives much better optimization times,
most of the beneficial crossproducts are discovered and plan costs are within 1% of the
DPhyp solutions on average.

6 Conclusion

In this paper we eliminate a severe limitation of the recently proposed adaptive join ordering
framework [NR18]. While generating high quality execution plans for many large queries
using search space linearization, the framework had to fall back to a greedy heuristic as soon
as a large query contained a single outer join. The generalized algorithm LinDP++ described
in this paper enables linearization of the search space of arbitrary queries, including those
with non-inner joins. We experimentally show that the join orders generated by LinDP++
are clearly superior to those generated by the greedy fallback of the original framework.

LinDP++ in addition is equiped with a fast heuristic to detect promising opportunities to
perform a crossproduct. Despite considering some crossproducts, LinDP++ deliberately
avoids looking at all crossproducts which would result in exponential search space size.
Furthermore, the heuristic ensures that any considered crossproduct obeys all reordering
constraints induced by non-inner joins. We demonstrate the effectiveness of this heuristic on
the queries of major database benchmarks. The heuristic detects most relevant crossproduct

LinDP++: Generalizing Linearized DP to Crossproducts and Non-Inner Joins 75

opportunities while keeping the search space small and thus optimization time reasonable.
Our experiments further verify that considering all valid crossproducts is not worth the
dramatically increased optimization time, as the additionally considered crossproducts
rarely lead to an additional cost reduction.

Even a polynomial time heuristic like LinDP++ becomes too expensive at some point.
At that scale, iterative dynamic programming has proven to be an effective technique, as
it allows to gracefully tune down plan quality in favor of acceptable optimization times.
According to our experiments however, the chosen greedy algorithm — Greedy Operator
Ordering (GOO) — seems to also have quality issues with non-inner joins. To ensure high
quality execution plans even at that scale we thus would like to investigate alternatives or
improve GOO in this setting.

This project has received funding from the European Research Council (ERC) under the
Euroean Union’s Horizon 2020 research and innovation programme (grant agreement No
725286). M =

References

[Anl4] Angles, Renzo; Boncz, Peter A.; Larriba-Pey, Josep-Lluis; Fundulaki, Irini; Neumann,
Thomas; Erling, Orri; Neubauer, Peter; Martinez-Bazan, Norbert; Kotsev, Venelin; Toma,
Ioan: The linked data benchmark council: a graph and RDF industry benchmarking effort.
SIGMOD Record, 43(1):27-31, 2014.

[CM95] Cluet, Sophie; Moerkotte, Guido: On the Complexity of Generating Optimal Left-Deep
Processing Trees with Cross Products. In: Proceedings of ICDT ’95. pp. 54-67, 1995.

[Fe98] Fegaras, Leonidas: A New Heuristic for Optimizing Large Queries. In: Proceedings of
DEXA ’98. pp. 726735, 1998.

[FM13] Fender, Pit; Moerkotte, Guido: Top down plan generation: From theory to practice. In:
Proceedings of ICDE 2013. pp. 1105-1116, 2013.

[GLP93] Gallo, Giorgio; Longo, Giustino; Pallottino, Stefano: Directed Hypergraphs and Applica-
tions. Discrete Applied Mathematics, 42(2):177-201, 1993.

[Gr95] Graefe, Goetz: The Cascades Framework for Query Optimization. IEEE Data Eng. Bull.,
18(3):19-29, 1995.

[HaO8] Han, Wook-Shin; Kwak, Wooseong; Lee, Jinsoo; Lohman, Guy M.; Markl, Volker:
Parallelizing query optimization. PVLDB, 1(1):188-200, 2008.

[Hil5] Hipp, R. et al.: , SQLite (Version 3.8.10.2). SQLite Development Team. Available from
https://www.sqlite.org/download.html, 2015.

[IK84] Ibaraki, Toshihide; Kameda, Tiko: On the Optimal Nesting Order for Computing N-
Relational Joins. ACM Trans. Database Syst., 9(3):482-502, 1984.

[KBZ86] Krishnamurthy, Ravi; Boral, Haran; Zaniolo, Carlo: Optimization of Nonrecursive Queries.
In: Proceedings of VLDB ’86. pp. 128-137, 1986.

https://www.sqlite.org/download.html

76 Bernhard Radke, Thomas Neumann

[KS00]

[Lel8]

[MFE13]

[MNO6]

[MNO8]

[MS79]

[Ne09]

[NR18]

[OL90]

[Se79]

[SMK97]

[Sw89]

[TK17]

[Tral7a]
[Tral7b]
[VM96]

[Vol18]

[WC18]

[WP00]

Kossmann, Donald; Stocker, Konrad: Iterative dynamic programming: a new class of query
optimization algorithms. ACM Trans. Database Syst., 25(1):43-82, 2000.

Leis, Viktor; Radke, Bernhard; Gubichev, Andrey; Mirchev, Atanas; Boncz, Peter A.;
Kemper, Alfons; Neumann, Thomas: Query optimization through the looking glass, and
what we found running the Join Order Benchmark. VLDB J., 27(5):643-668, 2018.

Moerkotte, Guido; Fender, Pit; Eich, Marius: On the correct and complete enumeration of
the core search space. In: Proceedings of SIGMOD 2013. pp. 493-504, 2013.

Moerkotte, Guido; Neumann, Thomas: Analysis of Two Existing and One New Dynamic
Programming Algorithm for the Generation of Optimal Bushy Join Trees without Cross
Products. In: Proceedings VLDB 2006. pp. 930-941, 2006.

Moerkotte, Guido; Neumann, Thomas: Dynamic programming strikes back. In: Proceedings
of SIGMOD 2008. pp. 539-552, 2008.

Monma, Clyde L.; Sidney, Jeffrey B.: Sequencing with Series-Parallel Precedence Con-
straints. Math. Oper. Res., 4(3):215-224, 1979.

Neumann, Thomas: Query simplification: graceful degradation for join-order optimization.
In: Proceedings of SIGMOD 2009. pp. 403-414, 2009.

Neumann, Thomas; Radke, Bernhard: Adaptive Optimization of Very Large Join Queries.
In: Proceedings of SIGMOD 2018. pp. 677-692, 2018.

Ono, Kiyoshi; Lohman, Guy M.: Measuring the Complexity of Join Enumeration in Query
Optimization. In: Proceedings of VLDB 1990. pp. 314-325, 1990.

Selinger, Patricia G.; Astrahan, Morton M.; Chamberlin, Donald D.; Lorie, Raymond A.;
Price, Thomas G.: Access Path Selection in a Relational Database Management System.
In: Proceedings of SIGMOD 1979. pp. 23-34, 1979.

Steinbrunn, Michael; Moerkotte, Guido; Kemper, Alfons: Heuristic and Randomized
Optimization for the Join Ordering Problem. VLDB J., 6(3):191-208, 1997.

Swami, Arun N.: Optimization of Large Join Queries: Combining Heuristic and Combina-
torial Techniques. In: Proceedings of SIGMOD 1989. pp. 367-376, 1989.

Trummer, Immanuel; Koch, Christoph: Solving the Join Ordering Problem via Mixed
Integer Linear Programming. In: Proceedings of SIGMOD 2017. pp. 1025-1040, 2017.

Transaction Processing Performance Council. TPC Benchmark DS, 2017.
Transaction Processing Performance Council. TPC Benchmark H, 2017.

Vance, Bennet; Maier, David: Rapid Bushy Join-order Optimization with Cartesian
Products. In: Proceedings of SIGMOD 1996. pp. 35-46, 1996.

Vogelsgesang, Adrian; Haubenschild, Michael; Finis, Jan; Kemper, Alfons; Leis, Viktor;
Miihlbauer, Tobias; Neumann, Thomas; Then, Manuel: Get Real: How Benchmarks Fail to
Represent the Real World. In: Proceedings of DBTest@SIGMOD 2018. pp. 1:1-1:6, 2018.

Wang, TaiNing; Chan, Chee-Yong: Improving Join Reorderability with Compensation
Operators. In: Proceedings of SIGMOD 2018. pp. 693-708, 2018.

Waas, Florian; Pellenkoft, Arjan: Join Order Selection - Good Enough Is Easy. In:
Proceedings of the 17th BNCOD. pp. 51-67, 2000.

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 77

Waves of misery after index creation

Nikolaus Glombiewski! Bernhard Seeger,2 Goetz Graefe?

Abstract: After creation of a new b-tree, the ordinary course of database updates and index
maintenance causes waves of node splits. Thus, a new index may at first speed up database query
processing but then the first “wave of misery” requires effort for frequent node splits and imposes
spikes of buffer pool contention and of I/0. Waves of misery continue over multiple instances although
eventually the waves widen, flatten, and spread further apart. Free space in each node left during index
creation fails to prevent the problem; it merely delays the onset of the first wave. We have found a
theoretically sound way to avoiding these waves of misery as well as some simple and practical means
to reduce their amplitude to negligible levels. Experiments demonstrate that these techniques are also
effective. Waves of misery occur in databases and in key-value stores, in primary and in secondary
b-tree indexes, after load operations, and after b-tree reorganization or rebuild. The same remedies
apply with equal effect.

Keywords: Indexing, Bulk Loading, B-tree

1 Introduction

The purpose of adding an index to a database table is to improve the performance of
query processing. Unfortunately, after an initial “honey moon” of using a new index and
of enjoying fast queries, the index may grow and require many node splits — thus creating
a spike in buffer pool contention and I/O activity. In other words, the index may actually
reduce query performance or at least fail to achieve the expected performance. Consider
the following example. First, a new secondary b-tree index enables fast look-ups and fast
ordered scans. In order to absorb updates without node splits, each node might start with
10% free space — often a parameter of index creation. However, once the table and the
secondary index approach 10% growth, many of the b-tree leaf nodes require splitting.
Thus, there is a wave of split activity with contention for the data structures for free space
management, for the buffer pool, and for the I/O devices. Once most of the original index
leaves are split, this activity subsides until the table and index grow above two times the
original contents, whereupon another wave of splits happens. During each wave of splits,
both update and query performance suffer, as do buffer pool contention and space utilization

I Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany,
glombien @mathematik.uni-marburg.de

2 Department of Mathematics and Computer Science, University of Marburg, 35032 Marburg, Germany,
seeger @mathematik.uni-marburg.de

3 Google Inc., Madison WI, USA, goetzgraefe @ gmail.com

©@@®@®@ doi:10.18420/btw2019-06

https://creativecommons.org/licenses/by-sa/4.0/
glombien@mathematik.uni-marburg.de
seeger@mathematik.uni-marburg.de
goetzgraefe@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-06

78 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

in memory and on storage. Figure 1 illustrates the effect in a b-tree with 8 million initial
index entries and insertion batches of 10,000 entries, with leaf splits per insertion batch
varying from O to over 600. The details of the experiment are given in the experimental
section. In order to reduce these wave of splits, alternative strategies for the initial bulk

800

600

400

Leaf Splits

200

0
0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)
Fig. 1: Waves of Misery
loading of b-trees are needed. The main contributions of this paper are a theoretical analysis

and solution for reducing splits as well as a variety of practical solutions that can easily be
integrated into existing bulk-loading techniques.

In the remainder of this paper, the next section reviews related prior work. After a section
illuminating the extent of the problem, two sections suggest both theoretically sound
remedies and simple practical remedies or approaches to the problem. An evaluation section
is then followed by a summary and suggestions for future research.

2 Related prior work

This section reviews relevant aspects of the well-known b-tree index structure. Knowledgeable
readers may feel free to skip ahead.

2.1 B-trees

B-tree indexes are ubiquitous in databases, key-value stores, file systems, and information
retrieval. There are many variants and optimizations [Gr11]; we review only those most

Waves of Misery After Index Creation 79

relevant to the new techniques proposed below. Suffice it to say that b-tree keys can be
multiple columns (compound indexes), hash values (ordered hash indexes enable efficient
creation, effective interpolation search, and easy phantom protection), space-filling curves
(spatial indexes for multi-dimensional data and query predicates), or heterogeneous keys
(merged indexes or master-detail clustering); and that both keys and values can be compressed,
e.g., as bit vector filters instead of a set of row identifiers. B-tree creation benefits from
sorting but sorting can also benefit from b-trees: runs in external merge sort in the form
of b-trees, or even all runs within a single partitioned b-tree [Gr03] or a linear partitioned
b-tree, enable effective read-ahead during a merge as well as query processing while a merge
step is still incomplete. This is the foundation of log-structured merge-trees, discussed later.
Sorted data permit efficient binary search; b-trees cache in their root node the first few keys
inspected in any binary search (or reasonably good representatives for those key values), in
the root’s immediate children the next few keys inspected in a binary search, etc. In order to
maximize the caching effect by minimizing key sizes, Bayer and Unterauer suggested suffix
truncation when splitting a leaf node: rather than split rigidly into halves, i.e., at the 50%
key, choose the shortest possible key value separating, say, the 40% and 60% keys [BU77].
Similar split techniques are also known from UB-trees [Ra00] and bulk-loading of R-trees
[ASW12].

In order to avoid node splits immediately after index creation, e.g., during the first insertion
into a new index, many implementation leave free space within each b-tree node. For a
pretty typical example, Microsoft SQL Server supports two free space parameters during
creation and reorganization of a b-tree index. The first one controls how much free space
is left within each b-tree node, both leaf nodes and branch nodes (except along the right
edge of the b-tree). The second parameter controls the number of empty pages, or more
specifically the percentage of empty pages in the sequence of b-tree pages. These empty
pages will be allocated during node splits. Leaving empty pages in this way ensures fast
scans on traditional hard disk drives even after many insertions and node splits. SQL Server
does not support free space fractions different for leaf and branch pages or free space
fractions per key range.

In addition to the ‘fill factor’ option, the ‘create index’ statement in Microsoft SQL Server
includes the option ‘pad index,” which specifies whether to apply the fill factor not only to
leaf nodes but also to branch nodes. Sybase supports the ‘fill factor’ option and a related
option ‘max rows per page.” The Oracle database and IBM DB2 support an index option
‘percent free’, which is the complement to the fill factor in SQL Server. The Oracle database
also support many related options regarding the number of pages reserved for future index
growth. Many other database systems support the Oracle or IBM syntax for free space
within indexes. The aspect important in the present context is that all products support a
fixed amount of free space in all index leaves, which causes waves of node splits.

80 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

2.2 Uneven page utilization and fringe analysis

Instead of using a fixed amount of free space, more flexible rules for the initial assignment of
records to pages are required to mitigate or even avoid the waves of misery. A theoretically
sound rule presented in this paper dates back to an analytical framework called fringe
analysis [Ya78] that is originally used to prove the expected storage utilization of b-trees and
other search trees. The framework of fringe analysis has been elaborated in [Ei82] and later
applied to the analysis of various versions of b-trees [BL89]. However, none of the previous
studies addressed the problem of bulk loading and the waves of misery identified in our work.
Closely related to fringe analysis is spiral hashing [Ma79] where the utilization of the pages
follows a logarithmic pattern. This avoids the undesirable oscillating search performance of
linear hashing [La88] because the page with the highest expected load is always split next.
However, the goal of spiral hashing is to guarantee a constant expected search performance
while our approach addresses the problems of constant insertion performance and buffer
contention.

2.3 Write-optimized b-trees

Traditional b-trees incur a high write penalty: modifying a single byte, field, or record forces
a random page write to persistent storage. Write-optimized b-trees [Gr04] attempt to reduce
this cost by turning the random write into a sequential write. More specifically, they employ
append-only storage at page granularity, tracking new page storage locations within the
b-tree structure, i.e., each page movement requires a pointer update in a parent page. Thus,
write-optimized b-trees encompass the most crucial function of a flash translation layer
(FTL). They do not permit neighbor pointers among sibling nodes; nonetheless, they permit
comprehensive consistency checks (online/continuous or offline/utility) by fence keys in
each page, i.e., copies of branch keys in ancestor pages. Write-optimized b-trees can suffer
from poor scan performance on storage device with high access latency (e.g., seek and
rotation delays). A possible optimization divides the key range into segments, stores each
segment in continuous storage, and recycles replaced pages within a segment. The key range
per segment may be dynamic, just as the key range per leaf node is dynamic in a traditional
b-tree. The resulting design combines elements and advantages of write-optimized b-trees
and of O’Neil’s SB-trees [ON92]. On flash storage, segments may coincide with an erasure
block.

2.4 Log-structured merge forests

Write-optimized b-trees optimize I/O patterns but still employ update-in-place within b-tree
nodes (database pages). Log-structured merge-trees [ON96] employ random access only
within memory but write to persistent storage only in append-only sequential patterns, each

Waves of Misery After Index Creation 81

page containing only new records. Thus, it seems that log-structured merge-trees solve the
problem of write amplification. Log-structured merge indexes turn updates into insertions of
replacement records and deletions into insertions of “tombstone” or “anti-matter” records.
With only insertions remaining, the principal algorithm is that of an external merge sort,
with runs in b-tree format and with the merge pattern optimized for both sorting and
querying. On one hand, a high fan-in and few merge levels permit efficient sorting; on the
other hand, as queries must search each one in the set (forest) of b-trees, efficient query
processing demands eager merging and thus a low fan-in in each merge step. Bit vector
filtering may reduce the number of b-trees a specific query needs to search, but merging
in log-structured merge trees is generally less efficient than in external merge sort. In fact,
small and sub-optimal merge fan-insertion can multiply the number of merge levels and
thus the amount of I/O compared to an optimal merge sort. A second principal weakness of
existing designs and implementations is that log-structured merge forests induce bursts of
system activity in the form of merging. In other words, they don’t avoid “waves of misery”
but merely replace one kind with another [Gr19].

2.5 Summary of related prior work

Among traditional b-trees, write-optimized b-trees, and log-structured merge-trees, tradi-
tional b-trees and write-optimized b-trees offer the best query latency (single partition search),
traditional b-trees and log-structured merge-trees the best storage utilization, write-optimized
b-trees and log-structured merge-trees the highest write bandwidth (sequential writes only),
and log-structured merge-trees the highest insertion bandwidth. Traditional b-trees and
write-optimized b-trees suffer from the waves of misery addressed here; log-structured
merge-trees have different waves of misery.

3 Problem assessment

While the introduction describes the problem in general terms and illustrates that the
problem indeed exists, the present section illustrates when the problem occurs, when it does
not, what characteristics or key value distributions cause the problem, etc. The following
sections offer a deeper understanding as well as one particular solution; the following section
offers more practical approaches and solutions. For b-tree leaf splits to occur in substantial
frequency, the index (and its underlying table or data collection) must grow. A b-tree with
little update activity and with little growth do not exhibit the issues discussed here. Little
or moderate update activity (without overall growth) can be absorbed without splits if the
initial index creation left free space in each node, as discussed in the preceding section. On
the other hand, most databases have at least some tables and indexes that capture continuous
business activity, whether those are banking transactions, web activity, sensor readings
from internet-of-things devices, or other types of events. For b-tree leaf splits to occur
in discernable waves, the key value distributions in the initial b-tree contents and in the

82 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

set of insertions must match. The higher their correlation, the sharper the waves. It is not
required that this distribution be uniform or any other particular form. Figure 2 illustrates
these points. If both initial key value distribution and insertions follow a normal or uniform
distribution, there are fairly sharp waves of node splits that even overlap in Figure 2. If, on
the other hand, their distributions differ, the waves are much less distinct. In a b-tree on

1000
= Normal to Normal
800 Uniform to Uniform
s niform to Normal
me= Normal to Uniform
600

400

Leaf Splits

200

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

Fig. 2: Development of leaf splits for varying key distributions

hash values, a high correlation between these distributions is extremely likely. B-trees on
hash values offer several advantages (over other traditional hash indexes), e.g., efficient
creation after sorting future index entries, simple implementation of phantom protection
(serializable concurrency control) by locking gaps between existing index entries, efficient
merge joins after index scans, and more. Note that b-tree nodes with near-uniform key
values permit interpolation search (instead of binary search) and that a b-tree root and its
immediate descendent nodes can be cached as a single super-large node in memory. Thus,
b-trees on hash values offer advantages but suffer from waves of leaf splits just as much
as other b-trees, perhaps even more so because hash functions are specifically designed to
produce uniform distributions and thus equal distributions in initial contents and insertions.

While free space left in each new b-tree node during index creation can absorb moderate
update activity, it cannot absorb long-term growth. Initial free space merely delays the first
wave of node splits, and it perhaps widens and weakens the first and subsequent waves, but it
does not prevent them. Figure 3 highlights this point: even with as little as 50% initial space
utilization (and thus also 50% free space on each index leaf), distinct waves occur. Thus, the
facilities found in commercial relational database products and their commands for index
creation do not prevent the waves of node splits addressed in the following sections.

The diagram in Figure 4 illustrates that index size matters. In a very small index (e.g., 1,000

Waves of Misery After Index Creation 83

Leaf Splits

Leaf Splits

1400
m——50% Utilization
1200 = 70% Utilization
90% Utilization
1000
800
600
400
200
0 [\ \ \ 1
0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)
Fig. 3: Development of leaf splits for varying initial page utilizations
800 —
= 1000 pages
10000 pages
600 = 100000 pages
= 500000 pages
400 §
200 -

I |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Insert Batch (Batchsize 10.000)

Fig. 4: Development of leaf splits for varying initial dataset sizes

84 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

leaf nodes), batches of 10,000 insertions force waves of node splits in rapid succession.
They widen and weaken after a few waves. In contrast, in very large index (e.g., 500,000
leaf nodes), many batches are required to fill the initial free space in each node, but then
there are distinct, high, and wide waves of node splits impacting database components such
as the buffer pool for a longer period of time.

4 Sound remedies

The goal of this section is to provide a theoretically sound solution for loading b-trees for
which succeeding insertions will trigger a split with a constant probability. Thus, there are
no waves of misery. We limit our discussion first to the leaf level and later extend it to
the upper levels of the tree. We assume records of constant size such that every leaf has a
capacity of B records. For the sake of readability (and because of space limitations) let B
being odd. Thus, a split of an overflowing page results into two pages each with (B+1)/2
records. A record has a unique comparable key that provides the ordering required for the
b-tree.

The basic idea of the following approach is to keep the filling degree of the leaf pages
in balance. Given a b-tree with n records, let fd;(n) denote the number of pages with i
records, (B + 1)/2 < i < B. Then, the probability that the next insertion triggers a split
is B* fd,(B)/(n + 1). As already shown in the introduction, this probability provides an
oscillating behavior, our waves of misery, in case of extreme differences among fd;(n). It
is also easy to see that the other extreme of a uniform fill degree with fd;(n) = fd;(n),
(B+1)/2 <i,j < Bandi # j, is not the theoretically sound solution because there are too
many full pages and too less pages with a low utilization. The sound solution is somewhere
between these two extremes such that the number of less populated pages is higher than the
one of more populated ones.

A key idea of our algorithm is to employ the steady-state probability p; that a page with
J records occurs in the sound solution, (B + 1)/2 < j < B. In an iterative manner, the
algorithm randomly determines j with probability p;, (B +1)/2 < j < B, and assigns
the next j records from the input to a new page. The iteration stops when the number of
remaining records is less than (3B + 1)/2. Then the algorithm performs in the following
way. If the remaining number of records is at most B, these records are stored in one leaf.
Otherwise, two pages are created over which the records are equally distributed. Overall,
this algorithm guarantees that all pages are at least half full as required for a traditional
b-tree.

In order to analyze the split occurrence of the b-tree after loading, we assume equal
distributions such that the distribution of insertions mirrors the key value distributions of
the records in the b-tree. More formally, a b-tree with n records partitions the key domain
into n + 1 empty intervals and the probability an insertion hitting such an empty interval is

Waves of Misery After Index Creation 85

1/(n + 1). Note that this model is entirely different from the restrictive uniform distribution
assumption.

Theorem 1 Let us consider a b-tree with N records being created by our loading algorithm
such that the probability q; of the next insertion hitting a page with j records is a(]%l)
Here, @ = Hp — H(p+3)/2 denotes a weight parameter, where H; = 3.1 <;<; 1/i is the partial
harmonic series of size j. Furthermore, records are continuously inserted into the initial
b-tree assuming equal distributions (i.e., insertion distribution mirrors the initial loading

distribution). Then, the following two statements are fulfilled:

. First, the probability that a record insertion triggers a split of a leaf is constant, i.e.,
there are no waves of misery.

. Second, the probability p; that a leaf consists of j records is given by p; = f&i(lz)) .

Sketch of the proof: The proof follows the basic ideas of fringe analysis [BL89; Ei82;
Ya78]. In the following, we provide a rough summary and refer the interested reader
to the original literature. For the following fringe analysis, we restrict our discussion to
the leaf pages of the b-tree. The number of records partition the leaves into classes C;,
(B+1)/2 < j < B.Class C; consists of all the pages with i records. For each class C;, f;(n)
denotes a counter for the corresponding number of leaf pages in a b-tree with n records. Let
gi(n) denote the probability that an insertion will be in a page of class C;. It follows that
gi(n) =i- fi(n)/(n+ 1) since there are a total of i - f;(n) records in pages of class C; and
every record is a left boundary of an empty interval where the next insertion may occur
with probability 1/(n + 1). Note that we make a negligible simplification because the first
interval has not a record as its left boundary. All these probabilities are collected in a vector
G(n). The basic idea of the fringe analysis is to keep track of this vector over a sequence of
insertions. By using a quadratic transition matrix T with (B+1)/2 columns and rows it is
possible to compute G(n + 1) from g(n) in a recursive way ([Ei82]):

1
gn+1)=(+ DX G(n) ey

Here I denotes the identity matrix. The steady-state ¢ = (¢(B+1)2, - - -» gg) of this recursive
equation is then given by the solution of T X § = 0. In [Ei82], it is shown that this results in

g;=1/G+1D (@)

for j = (B +1)/2,..., B. Because the leaf pages are filled in our initially loaded b-tree
with N records such that the probability G(N + 1) = ¢, it follows that g(N + k) = ¢ for
k =1,2,.... In particular, the probability gg (N + k) = gp remains constant for k = 1,2, ...
and so does the probability of a split. Thus, the first statement of Theorem 1 is fulfilled.

For the proof of the second statement, we make use of g;(n) - (n + 1)/ being the expected

86 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

number of buckets with j records [Ei82]. Moreover, (n+1)/(B-In2) is the expected number
of pages in a b-tree with n records because the expected storage utilization of a b-tree is In 2.
The corresponding quotient of the two expected values is then B - In(2)/j(j + 1). In fact,
this quotient is asymptotically equal to p;, the probability of a page comprising j records
[BL89]. Thus, the second statement is also fulfilled, and our iterative loading algorithm is
equipped with a theoretically sound rule for determining the filling degree of the next page.

So far, the discussion is limited to the leaf level only. Waves of misery still may occur for the
index levels when a threshold-based loading approach is used. However, it is easy to see that
our algorithm is also directly applicable to every index level. Also note that the algorithm
runs online on an input stream, and therefore, the entire tree, including all index levels, is
built from left to right as it is known from the standard loading algorithm of b-trees.

The probability vector introduced in Equation 2 is also known as the steady-state solution of
the recursive equation. It is the foundation to show that the expected storage utilization is In 2
[Ya78]. Thus, the loading algorithm also creates b-trees with an expected storage utilization
of In2. This result can be guaranteed by changing the algorithm to a deterministic one
where the ratio of pages with i records, (B +1)/2 < i < B exactly matches the probabilities.
Then, the loaded b-tree guarantees a storage utilization of In 2. Unfortunately, there is no
steady-state solution with a higher storage utilization for the loaded b-tree. In order to obtain
a higher storage utilization and a b-tree without waves of miseries, it is required to change
the split policy of the b-tree by using partial expansions or elastic pages [BL89]. This is a
direct extension of our approach and is not further elaborated in the paper.

The analysis in this section assumes that the key value distribution in the set of insertions
mirrors that of initial b-tree contents. Moreover, it assumes that an overall space utilization
of In(2) ~ 69% is sufficient for the application. Therefore, the following section offers some
practical approaches that do not require these assumptions. The subsequent section offers
an evaluation of both the techniques above and those below.

5 Practical remedies

With waves of nodes splits occurring in practice, although often not recognized, practical
remedies are required that fit into scalable data center operations. For example, limiting
initial or steady-state storage utilization to 69% is unacceptable. Therefore, many b-tree
implementations attempt load balancing before splitting two nodes into three; and many
database administrators frequently reorganize (rebuild) their indexes to reset free space per
node to, say, 10%. Note that splitting 2-to-3 or even k to k+1 does not avoid waves of misery.

Even if the goal is to achieve, say, 10% free space in each node, it is not required to achieve
10% free space rigidly and precisely. Instead, the same overall objective is accomplished
by leaving a different amount of free space in each node, chosen from a uniform random
distribution from 0% to 20%, from 5% to 15%, or anything similar.

Waves of Misery After Index Creation 87

Another possible approach is to make this very systematic: 1st node 0% free space, 2nd
node 1%, etc. to 21st node 20%; then restarting with 0% free space, etc. This approach
favors some range queries and disfavors others, so an alternative assigns 0% free space to
the 1st node, 20% to the 2nd node, 1% to the 3rd node, 19% to the 4th node, etc.

An entirely different approach assigns free space not numerically but by following the logic
of suffix truncation (suffix compression) [BU77]. Originally conceived for splitting nodes
in the middle, it can be adapted to index creation and reorganization when dealing with
non-numeric keys. For example, instead of leaving precisely 10% free space, the key values
at 80% and at 100% are compared, the shortest possible key value for the b-tree branch
node determined, and the key values distributed to the current and next node according to
this branch key. If there is no correlation between the shortest key value and its position,
this approach promises a distribution of node utilization similar to the random approach
above, with the compression effect added.

Finally, multiple of these techniques may be combined. For example, suffix truncation for
the Ist node may look at the key values at the 80% and 100% positions, for the 2nd node at
70% and 90%, for the 3rd node at 79% and 99%, for the 4th node at 71% and 91%, etc.
Other combinations may also be possible.

6 Evaluation

All experiments were conducted on a workstation equipped with an AMD Ryzen7 2700X
CPU (8 cores, 16 threads) and 16GB of memory, running an Ubuntu Linux (18.04, kernel
version 4.16). All of strategies were implemented using the Java indexing library XXL
[Se01]. If not stated otherwise the b-tree was initially loaded using 100,000 pages of 8KB.
The tree holds records consisting out of 21 integer values (totaling 84 bytes) of which 20
values are uniformly random. The last value is the key and is being randomly sampled
according to a normal probability distribution. The loading phase is succeeded with 60
million record insertions. The results are shown based on the statistics of a batch of 10,000
insert operations. Having batches of 10,000 records is not uncommon and allows for a
reduction of statistical noise. In the following, the practicality of the sound remedies, which
are ideal for 69% utilization, are evaluated first. Afterwards, the various practical remedies
also suitable for higher utilization requirements are analyzed.

6.1 Sound Remedies

To get a better understanding of the meaning of the sound remedies, the distribution of free
space among all pages for an ideal solution (i.e., a b-tree in a steady state) and the proposed
algorithm of the sound remedies section need to be evaluated. Naturally, in the ideal case,
the overall space utilization amounts to In(2) = 69%. Figure 5 depicts the results based on

88 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

4000
Ideal
=== Sound Remedy
3000
Na

5 5
& \\\
[
S 2000
= \'\\\
3 N> S
£ ——
< e

1000 __)

0

50 55 60 65 70 75 80 85 90 95 100
Utilization in %

Fig. 5: Initial Page Distributions

the different utilization (x-axis) and the amount of pages having them (y-axis). The ideal
solution shows the basic notion of the steady state: There are a few pages ready to be split
right away (100% utilization, no free space), a lot pages not even near their split point (50%)
and having all other utilization values in between them represented in the tree on a gradual
slope. The sound remedy has the same features, but features some slight spikes in the slope.
This is due to the the asymptotic nature of the algorithm and its inherent randomness -
utilization is picked at random based on the described probability function. The latter is an
important feature of the algorithm due to range queries: If the slope is perfect, a certain
range of pages will have more free space than other pages. Thus, those ranges require more
pages to be read.

As shown in Figure 6, the sound remedy also performs well in practice, if its assumptions
are met. The x-axis represents the progression of insert batches while the y-axis shows the
amount of leaf splits measured during each batch. While the constant strategy of having
each page having the same utilization shows clear waves of splits, the sound remedy begins
in the steady state and never leaves it.

6.2 Practical Remedies

Based on Section 5, three loading strategies were implemented that can easily be adapted
into most systems in order to reduce the waves of misery. The most important parameters
are the amount of data items to load and a target number of pages along with the overall
space utilization. The analysis for each of the strategies is presented in turn. First, results for
the linear strategy that systematically assigns free space to each page are shown. Second,

Waves of Misery After Index Creation 89

800
= (Constant 69%
=== Sound Remedy
600
<]
A 400
[
<
Q
=
200

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

Fig. 6: Leaf Splits over time for ideal theoretical conditions (69% page utilization)

results for the random strategy that randomly assigns free space are presented. Third, a
combination of both those strategies (hybrid strategy) is evaluated. Afterwards, the impact
waves of misery can have on the buffer pool are discussed. The final subsection features
the results on range query processing. As with the sound remedies, the constant strategy of
uniformly loading each page with the same space utilization serves as a baseline for each
evaluation.

6.2.1 Linear Strategy

The linear strategy assigns pages according to a linear function starting at 100% page
utilization. The gradient and lower end of the function is computed based on the desired
utilization and the amount of pages. In order to support range queries, values from the higher
and lower end of the function are picked in an alternating fashion until both ends meet. At
this point, all data has been successfully loaded into the tree. Figure 7 compares the impact
of insertion of various initial utilization (70%, 80% and 90%) for the linear strategy. The
y-axis shows the leaf splits while the x-axis indicates the total amount of batches inserted
into the b-tree. Even at a high utilization of 90%, the linear strategy showcases slightly
better leaf split performance than the constant strategy at 70%. Naturally, this means that
achieving a similar split behavior requires less overall storage space for the same amount of
data. Furthermore, the lower the utilization, the more the impact of waves is reduced. Even
at 80%, the behaviour is somewhat close to the steady state and there are only short bursts
of splits present.

90 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

800
| inear 70%
s Linear 80%
600 Linear 90%
s Constant 70%
8
a
400
5
=
200
0

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

Fig. 7: Leaf Splits over time for linear strategies

6.2.2 Random Strategy

The random strategy chooses the page utilization of each successively loaded page randomly
around the range of the given overall desired storage utilization. Due to randomness, the
final page count may differ from the expected page count given the desired utilization, but
those differences are expected to be negligible. Results presented in Figure 8 are based on a
desired utilization of 80% with the same axis labeling as in Figure 7. The different lines
present a varying range from which the random function chooses, i.e., Random 5% Range
picks values from about 75% to 85% utilization while Random 20% Range picks values
from 100% to 60%. A small range of 5% shows surprisingly little benefit compared to the
constant strategy. However, wider ranges improve the desired effect significantly and tamper
the waves of misery.

6.2.3 Hybrid Strategy

Both the linear strategy and the random strategy can significantly reduce the waves of
misery and thus offer a good solution to implement in most systems. However, the strategies
still show some slight waves when compared to the sound remedies at 69%. This is due
to their initial load distribution. Similar to Figure 8, the results in Figure 9 showcases the
page utilization distributions for the random and linear strategies in comparison to the ideal
at 69% overall utilization. The utilization is on the x-axis and the amount of pages having
it on the y-axis. The best result for the random strategy requires a random range of 31%,
resulting in pages with less than 50% utilization. On the flip side, a lower range of 10%

Waves of Misery After Index Creation 91

1000
mm Random 20% Range
800 === Random 10% Range
Random 5% Range
= Constant 80%
i 600
a
wn
[
8
— 400

200

0 1000 2000 3000 4000 5000 6000
Insert Batch (Batchsize 10,000)

Fig. 8: Leaf Splits over time for random strategies

Ideal | inear Ideal Hybrid
Random 31% Random 10%
5000 5000
VW~
4000 4000 \
»n »n \\
5 5
8 3000 s 3000
G G
S) — S \
S 2000 S 2000 :
Q =]
g g
< <)
1000 1000 -
0 0
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
Utilization in % Utilization in %

Fig. 9: Comparing the ideal initial page distribu- Fig. 10: Comparing the ideal initial page distribu-
tion with linear and random strategies tion with the hybrid strategy

92 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

does not lead to underful pages, but does not feature the overall range of different page
utilization required for steady split rates. While the linear strategy features the right range
of page utilization, their distribution is constant and thus not ideal.

To mitigate these deficiencies, a hybrid strategy which combines both ideas from linear and
random was implemented. In order to reduce the rigid constant distribution of the linear
strategy while keeping its overall range, only half of the pages are loaded according to this
strategy. For the other half, randomness is applied as follows: Utilization is first randomly
chosen between 50% and 100%. Afterwards, this range is narrowed linearly (i.e., lesser
filled pages become more likely) until the bulk loading is complete. The resulting initial
page utilization distribution is depicted in Figure 10. Clearly, combining those multiple
simple strategies leads to a good approximation of the ideal solution.

s Hybrid 69% Random 69% s Hybrid 80% Random 80%

300 300

2 200 2 200
i s
n n
Gy G
< <
Q Q
— —
100 100
0 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Insert Batch (Batchsize 10,000) Insert Batch (Batchsize 10,000)

Fig. 11: Leaf Splits over time for hybrid strategy Fig. 12: Leaf Splits over time for hybrid strategy
at 69% page utilization at 80% page utilization

Figure 11 verifies this statement by showcasing results for the insertion experiment for
the first 4,000 insert batches at an overall target page utilization of 69%. The random
strategy using a range of 31%, the best candidate for its class in terms of splits, is used as
a point of comparison. The hybrid strategy outperforms it and is in the steady state from
the get-go. The same experiment was repeated for 80% utilization (Figure 12). Since the
b-tree does not have the theoretically ideal target utilization, the hybrid strategy does suffer
from slight waves. However, it is still able to outperform the random strategy and overall
has significantly reduced the impact of splits. Furthermore, while this experiment focuses
on numeric keys, the hybrid strategy can be adjusted for non-numeric keys by using suffix
truncation instead of randomly choosing keys within the ranges.

Waves of Misery After Index Creation 93

6.2.4 Buffer Pool Utilization

Up until now, the evaluation focused on split frequencies, which are a natural indicator
of I/Os and buffer pool contentions. To showcase the effects on the actual buffer, the
experiments were verified by deploying an LRU buffer and measuring its statistics. To
analyze leaf splits separately, separate buffers for inner and leaf nodes were used.

The first experiment utilizes a buffer with 10,000 pages and compares the sound remedy
strategy with a constant strategy with a target utilization of 69%. Figure 13 showcases

=== Constant 69% Sound Remedy Constant 80% Random 20% Range
95 95
90 90
X 85 X 85
R= g
5" g
g 75 g 75
S 70 S 70
S Bt
£ 65 £ 65
2 a
“ 60 60
55 55
50 50
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Insert Batch (Batchsize 10,000) Insert Batch (Batchsize 10,000)

Fig. 13: Buffer pool utilization over time for 69% Fig. 14: Buffer pool utilization over time for 80%
page utilization page utilization

the results. Here, the y-axis shows the buffer utilization, i.e. the quotient of used buffer
pool bytes to totally available raw bytes. Clearly, the waves of misery also appear in the
buffer utilization for the constant strategy while the algorithm based on the sound remedies
eliminates them. The experiment was repeated for a higher overall utilization of 80%. This
time, the constant strategy is compared to a random strategy featuring a range of 20%. As
Figure 14 shows, waves for the constant strategy are even higher than at 69%. Furthermore,
the random strategy reduces them just as it reduced the amount of leaf splits.

Finally, both constant and random strategies at 80% overall space utilization were compared
for different buffer sizes based on buffer evictions, i.e. leaf pages being written out from
the buffer onto disk due to other reads or writes requesting another page. Figure 15 depicts
the total amount of evictions (y-axis) per batch (x-axis) while having varying buffer sizes
(10,000, 20,000 and 100,000 pages) for each strategy. At 10,000 and 20,000 maximum
buffer capacity, the waves of misery in form of increased spike of write operations are
clearly visible for the constant strategy. Meanwhile, the random strategy almost eliminates
the effects. For a larger buffer size of 100,000 pages, the additional writes are obviously

94 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

11000
10000
9000
8000

.S 7000 f
S 6000
3 = Constant 10k Buffer
= 5000 .
P = Constant 20k Buffer
= 4000
M Constant 100k Buffer
3000 mmm Random 10k Buffer
2000 m—— Random 20k Buffer
1000 s Random 100k Buffer
0
0 1000 2000 3000 4000 5000 6000

Number of Insert Batches (Batchsize 10.000)

Fig. 15: Buffer evictions (writes) over time for varying buffer sizes

absorbed into buffer pool, causing only buffer contention and additional split operations,
but no spikes in I/Os. Nevertheless, since the b-tree increases in size, more pages have to be
constantly written out. The random strategy allows for a more gradual increase. Meanwhile,
the constant strategy shows sharper steps at the points of the waves of misery since there is
a sudden increase in new pages.

6.2.5 Range Queries

Since the proposed strategies do not load pages with a uniform free space, this obviously has
some impact on range queries. For example, in the simple case of uniform key distribution,
there is a chance that the same range span may hit varying degrees of full pages for different
key ranges in the key space, resulting in more page reads and a negative performance impact.

To analyze this impact, the whole key space of a tree was queried using a succession of
jumping range queries. First, a tree was loaded with 500,000 pages at a targeted utilization
of 80% using an uniform key distribution ranging from the integer key O to the integer
key of 100 million. Afterwards the range is successively queried with key ranges spanning
100,000 values starting from the first key, then querying the next 100,000 values, etc. until
the last key is reached. Figure 16 features the results of this experiment for variations of
the linear strategy. The starting value of the range query is depicted on the x-axis and the
number of (leaf) pages accessed in the query on the y-axis. The strict linear strategy refers
to a linear distribution which does not alternate between page sizes. It performs best for the
first couple of ranges, because those ranges have the most full pages. On the flip side, it

Waves of Misery After Index Creation 95

700

650 mes Strict Linear

=== Alternating Linear

600

550

500

450

Pages Accessed

400
350

300
OM 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M

Range Start Point

Fig. 16: B-tree range queries (range 100k) with varying starting points that cover the whole tree range

deteriorates for last ranges, since those ranges feature less occupied pages. The alternating
linear strategy reduces this variation in performance and constantly accesses 500 pages
for each read operations. We also repeated this experiment for the constant strategy, which
performs about the same as alternating linear strategy. Furthermore, the random strategy
also performs in the same ballpark, but, as expected, has slightly more spikes due to its
randomness.

7 Summary and suggestions for future work

In summary, research in the past has overlooked the waves of node splits starting soon after
b-tree creation, load, or reorganization. There are multiple means for avoiding or reducing
them; many of them are both simple and effective. Among them, a free space target plus
suffix truncation during leaf splits (as recommended decades ago in the context of prefix
b-trees) offer the best combination of multiple advantages. Put differently, while suffix
truncation during leaf splits has always been a good idea for minimizing the number of
branch nodes and for speeding up root-to-leaf traversals, it is now clear that it is also a good
idea and an effective means for avoiding multiple waves of misery after each index creation,
load operation, and reorganization. Ongoing research focuses on “waves of misery” in
log-structured b-tree forests [Gr19]. Future work will further research “waves of misery” on
b-tree branch nodes, waves of node splits for specific key calculations such as space-filling
curves, their forms and impacts in index and storage structures other than b-trees, specific
forms of waves after specific load sequences such as sorting before loading R-trees, and
what remedies may apply in the context of those index and storage structures.

96 Nikolaus Glombiewski, Bernhard Seeger, Goetz Graefe

Acknowledgments

This work has been partially supported by the German Research Foundation (DFG) under
grant no. SE 553/9-1.

The idea for this work was made possible through discussions held at the Dagstuhl seminars
17222 (“Robust performance in database query") and 18251 (“Database architectures for
modern hardware").

References

[ASW12] Achakeev, D.; Seeger, B.; Widmayer, P.: Sort-based query-adaptive loading of R-trees. In:
CIKM’12. Pp. 2080-2084, 2012.

[BL89] Baeza-Yates, R. A.; Larson, P.: Performance of B+-Trees with Partial Expansions. IEEE
Trans. on Knowledge and Data Engineering 1/2, pp. 248-257, 1989.

[BU77] Bayer, R.; Unterauer, K.: Prefix B-Trees. ACM Trans. on Database Systems (TODS) 2/1,
pp. 11-26, 1977.

[Ei82] Eisenbarth, B.; Ziviani, N.; Gonnet, G. H.; Mehlhorn, K.; Wood, D.: The Theory of
Fringe Analysis and Its Application to 2-3 Trees and B-Trees. Information and Control
55/1-3, pp. 125-174, 1982.

[Gr03] Graefe, G.: Sorting And Indexing With Partitioned B-Trees. In: CIDR. 2003.

[Gr04] Graefe, G.: Write-Optimized B-Trees. In: VLDB 2004. Pp. 672-683, 2004.

[Grl1] Graefe, G.: Modern B-Tree Techniques. Foundations and Trends in Databases 3/4,
pp- 203-402, 2011.

[Gr19] Graefe, G.: Waves of misery in b-tree forests, in preparation, 2019.

[La88] Larson, P.: Dynamic Hash Tables. Communications of the ACM 31/4, pp. 446457, 1988.

[Ma79] Martin, G.: Spiral storage: Incrementally augmentable hash addressed storage, Theory of
Computation, tech. rep., University of Warwick, 1979.

[ON92] O’Neil, P.E.: The SB-Tree: An Index-Sequential Structure for High-Performance Sequen-
tial Access. Acta Informatica 29/3, pp. 241-265, 1992.

[ON96] O’Neil, P.E.; Cheng, E.; Gawlick, D.; O’Neil, E.J.: The Log-Structured Merge-Tree
(LSM-Tree). Acta Informatica 33/4, pp. 351-385, 1996.

[Ra00] Ramsak, F.; Markl, V.; Fenk, R.; Zirkel, M.; Elhardt, K.; Bayer, R.: Integrating the
UB-Tree into a Database System Kernel. In: VLDB 2000. Pp. 263-272, 2000.

[Se01] Seeger, B.: eXtensible and fleXible Library (XXL) for Java, 2001, urL: https://github.
com/umr-dbs/xx1, visited on: 09/30/2018.

[Ya78] Yao, A.C.: On Random 2-3 Trees. Acta Informatica 9/2, pp. 159-170, 1978.

https://github.com/umr-dbs/xxl
https://github.com/umr-dbs/xxl

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 97

Eliminating the Bandwidth Bottleneck of Central Query
Dispatching Through TCP Connection Hand-Over

Stefan Klauck! Max Plauth! Sven Knebel! Marius Strobl? Douglas Santry,2 Lars Eggert2

Abstract: In scale-out database architectures, client queries must be routed to individual backend
database servers for processing. In dynamic database systems, where backend servers join and leave a
cluster or data partitions move between servers, clients do not know which server to send queries to.
Using a central dispatcher, all queries and responses are routed via a single node. In a system with
many high-performance backends, such a central node can become the system bottleneck. This paper
compares three different approaches for query dispatching in terms of scaling network throughput and
processing flexibility. Off-the-shelf TCP/HTTP load-balancers cannot dispatch individual queries
arriving over a single connection to different backend servers, unless they are extended to understand
the database wire protocol. For small response sizes up to 4 KB, a purpose-built query dispatcher
delivers the highest throughput. For larger responses (i.e., BLOBs or data sets for external analysis),
a novel approach for network proxying that transparently maps TCP connections between backend
servers performs best. We propose hybrid query dispatching that performs a TCP connection hand-over
on demand when returning large database results.

Keywords: Scale-Out Database Systems, Query Dispatching, Load-Balancing

1 Query Dispatching

In scale-out database systems, queries must be routed to individual backend servers. Clients
may send queries directly to individual backends (see Figure 1a). In this case, they have to
select a suitable server with respect to load-balancing and data distribution. An alternative
approach uses one or multiple dedicated controller nodes (‘““dispatchers”), which act as
central load-balancers (see Figure 1b).

Client 1 DB Backend 1 Client 1 DB Backend 1

Dispatcher

Client m DB Backend n

DB Backend n

(a) Direct communication. (b) Central dispatcher.

Fig. 1: Query dispatching architectures.

1 Hasso Plattner Institute, University of Potsdam, Germany
2 NetApp

©@@®@® doi:10.18420/btw2019-07

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-07

98 Stefan Klauck et al.

TCP/IP is the most common communication protocol to exchange information in shared-
nothing architectures. Likewise, database systems use wire protocols over TCP/IP. Without
dispatchers, clients communicate directly with backend servers, using one or more TCP
connections for each. With central dispatchers, the dispatchers mediate client communication
with backend servers, often terminating client TCP connections and maintaining a separate
set of (persistent) TCP connections with the backend servers. Dispatchers introduce
overhead, but also provide several advantages. They allow for simpler clients that remain
unaware of individual backend servers, their load levels, and the deployed physical design,
i.e., partitioning and replication. This is advantageous for elastic and dynamic systems,
because servers can transparently join or leave a cluster and data can be repartitioned on the
fly. Such flexible database backends have increased in importance [Cul0, Sel6, RJ17].

Dispatchers can be used independently of particular database systems, which may have
different communication characteristics. Workloads for transactional systems and key-value
stores are characterized by simple read and write queries (or get and put operations). Message
sizes comprise usually up to a few kilo bytes, but larger data object comprising mega bytes
of data may occur from time to time. The in-memory database Silo can process almost 700K
TPC-C transactions per second [Tul3]. Analytical workloads are characterized by more
complex queries with varying response sizes for which the query execution time dominates
communication costs most of the time. However, Raasveldt et al. claim that transferring
large amounts of data from databases to clients is common for complex statistical analyses
or machine learning [RM17] in the application.

The existence of a database bandwidth bottleneck depends on the query characteristics,
especially the ratio of database processing and result set sizes. Comparing the speed of a
single 10 Gb network interface controller (NIC) and 8 CPU cores accessing main memory
with 10GB/s, we informally claim that the network is 64 times slower in this scenario.
Resulting, a reasonably well-programmed result-set serialization can produce messages that
are an order of magnitude larger than those which can be send. (Note that serialization can be
parallelized and carried out asynchronously to messages transfer.) In systems with multiple
backend servers, a central query dispatcher can further constrain the data throughput.
Prism [Hal7] eliminates the dispatcher bottleneck by redirecting client connections to
individual backend servers on a query level. Redirecting TCP connections adds overhead
for packet transformations but pays off for large data transfers.

Contributions: In this paper, we investigate database query dispatching for large messages.
We integrated Prism into the in-memory database Hyrise [Gr10] and compare the perfor-
mance of Prism against two approaches with the state-of-the-art architecture for central
dispatchers, i.e., using two separate TCP connections, one between client and dispatcher, the
other between dispatcher and backend. The first approach is the purpose-built Hyrise query
dispatcher [Sc15]; the second is the off-the-shelf TCP/HTTP load-balancer HAProxy [Ta].
We investigate for which message sizes the Prism architecture outperforms the classical
dispatcher architecture. In case message sizes are known in advance, Prism’s connection
redirection can be carried out on demand.

Eliminating the Bandwidth Bottleneck of Central Query Dispatching 99

Outline: The remainder of this paper proceeds with an introduction of the compared
dispatcher implementation in Section 2. In Section 3, we evaluate the performance of
implementations. Section 4 discusses the results and most important aspects of query-based
load-balancing. Section 5 describes related work, and Section 6 concludes the paper.

2 Dispatcher Implementations

To evaluate the different dispatcher implementations, we use a cluster of Hyrise [Gr10]
database instances that implement lazy master replication. Load-balancing can be imple-
mented at connection, transaction, or query level [CCAO08]. While query processing at
backends is independent of load-balancing, a dispatcher has to understand the message
format in order to perform transaction- and query-level load-balancing. Hyrise uses JSON-
encoded query plans encapsulated in HTTP request bodies. Other databases use different
message-based protocols [RM17]. The Hyrise dispatcher and Prism can be extended to
implement these wire protocols, because their underlying architectures are database-agnostic.

2.1 Hyrise Dispatcher

The Hyrise dispatcher is a purpose-built query load-balancer for Hyrise database clus-
ters [Sc15]. Using purpose-build dispatchers for different database systems in common,
because they have to understand the database wire protocol. To the best of our knowledge,
all central query dispatchers send client queries and database responses over two separate
TCP connections successively: the first between the client and the dispatcher; the second
between the dispatcher and a database backend.

The Hyrise dispatcher uses the Berkeley socket API with a buffering mechanism that avoids
copying data inside the user space. Client requests are first read into a buffer, after which
the dispatcher parses the requests and forwards queries to a suitable backend. The Hyrise
dispatcher uses the nodejs/http-parser3 for parsing client requests and extracting queries.
Writes go to the master, while reads can go to any node, and tables loads are replicated across
all database instances. Query responses are returned to clients also via the Hyrise dispatcher.
The current implementation of the Hyrise dispatcher uses one thread per client connection.
This implementation was sufficient for the experimental analysis, which uses a small number
of persistent client connections. However, we observed some thread interference, especially
when not pinning threads to CPU cores.

2.2 HAProxy

HAProxy [Ta] is a popular and general-purpose TCP/HTTP load-balancer. It has a similar
design as the Hyrise dispatcher with separate TCP connection between clients and dispatcher

3 https://github.com/nodejs/http-parser

100 Stefan Klauck et al.

Prism Controller
Update

L {Lookup/lnsert Trigger }

Protocol/ Connection

Request Hand-Off/

Handler Hand-Back
T

Connection
State Table

Handler

Unmatched Packets \Transform Rules Connection
i Hand-Off/Hand-Back
A

Rewrite IP
Lookup(Src IP, Src || | Rewrite MAC [
TCP Port, ... Zero Window \ DB Backend
Clear Fin

il Switch Logic Prism Interface
i : - TCP Repair Socket
Client Prism Switch

Fig. 2: Prism software architecture, based on [Hal7].

as well as dispatcher and backends. Including an off-the-shelf solution in the evaluation is
interesting, because it is consistently updated for performance and support of new features.
However, it requires some customization in order to adapt it to the specific scenario.

HAProxy can perform routing and processing decisions based on aspects of an HTTP
request, such as the request URI. Following, HAProxy can be used for Hyrise clusters
as long as the distinction between reads (to be distributed between replicas) and writes
(to be delivered to the master) can be made without a deep inspection of HTTP request
bodies. When it comes to load-balancing of application-level protocols other than HTTP
(as for other databases), HAProxy is limited to TCP connection load-balancing. Resulting,
HAProxy and possibly other off-the-shelf load-balancers cannot be used with database
clusters that partition data or replicate only subsets of the data.

2.3 Prism

In analogy to an optical prism, Prism [Hal7] transparently splits a single TCP connection,
breaking out different application-level requests and forwarding them to different backend
servers by means of reprogrammable software-defined networking (SDN) switches, such as
P4 [Bo14] hardware switches or software switches, such as mSwitch [Ho15]. By default, the
mSwitch kernel software switch operates in learning bridge mode, but allows for dynamic
packet forwarding decisions by ancillary modules, such as the kernel component of Prism.

Figure 2 shows Prism’s software architecture. Prism logically consists of a controller, which
handles TCP handshaking and parses client request headers, and a programmable switch,
which the controller reprograms to route TCP packets containing request and response
payloads directly between a backend server and the client. After a backend server has
handled a request, the controller resumes handing off the client’s TCP connection. Compared
to traditional proxy approaches, Prism significantly reduces load on the controller, because
the majority of packets is exchanged directly between clients and backends. Eliminating the
controller as a central bottleneck for most of the communication also means that connections
can take better advantage of typical multi-connected datacenter fabrics, significantly

Eliminating the Bandwidth Bottleneck of Central Query Dispatching 101

Client 1 Load-Balancer DB Backend 1 Client 1 DB Backend 1

wrk 1 Hyrise Dispatcher/ Hyrise 1| [wrk 1 Prism Controller Hyrise 1
HAProx:

|
- mSwitch - mSwitch
Client 2 Learning Bridge Mode DB Backend 2 Client 2 Prism Switch Module DB Backend 2

wrk 2 Switch Hyrise 2| [wrk2 Switch Hyrise 2
(a) Hyrise dispatcher and HAProxy topology. (b) Prism topology.

Fig. 3: Topologies for the evaluations, based on [Hal7].

improving performance. Dispatching at the switch level does incur some overheads, due
to the need to reprogram switches and performing connection hand-offs, making Prism
primarily suitable for larger messages. In most scenarios, the Prism connection hand-off
only becomes possible after the complete query is received at the controller. Although the
bandwidth for queries to the database is not increased in this case, database results can be
sent with higher overall bandwidth. Details of Prism, e.g., the connection hand-over and
TLS support, are described in [Hal7].

3 Evaluation

We integrated Prism into Hyrise. This integration is transparent to clients, but required
changes to the database server, which has to be able to hand-over TCP connections with
the Prism controller (see Figure 2). In this section, we compare the query dispatching
performance of Prism, the Hyrise dispatcher, and HAProxy. We describe the experimental
setup in Section 3.1. The results are presented in Section 3.2.

3.1 Experimental Setup

Our experimental setup is similar to the one employed for evaluating Prism [Hal7], but
extends the experiments with 40G Ethernet. It is comprised of six nodes: two clients, two back-
ends and two “dispatcher” machines acting as either software switches or Hyrise/HAProxy
dispatchers, depending on whether measurements using 10 or 40G networking are conducted.
Figure 3a depicts the logical topology used for the Hyrise dispatcher and HAProxy tests,
Figure 3b likewise for Prism. Using only two clients and backend servers is no architectural
limitation, but a result of limited own network hardware resources and the impossibility of
running the experiments in public clouds due to insufficient hardware control.

The client machines are equipped with one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz,
64 GB of 1333 MHz DRAM and Linux 4.11 kernels with Ubuntu 17.04. Backends have
two Intel Xeon E5-2650 packages clocked at 2.0 GHz and 128 GB of 1333 MHz memory,
running Linux 4.8 kernels with Ubuntu 16.10. The remaining “dispatcher”” machines have
one Intel Xeon E5-2680 v2 CPU clocked at 2.8 GHz, 64 GB of 1600 MHz DRAM, running
Linux 4.8 with Ubuntu 16.10.

102 Stefan Klauck et al.

For the 10G experiments, all machines use Intel 82599ES dual-port NICs, connected through
an Arista 7050QX-32-F switch. For the 40G experiments, the “dispatcher” nodes have
Intel XL'710-QDA2 dual-port NICs, while backends and clients use Mellanox ConnectX-3
MCX354A-FCB NICs. All 40G cards are directly connected, because of insufficient 40G
ports on the Arista switch. The Ethernet MTU is set to the default of 1500 B in all cases.

Depending on which dispatcher approach is being measured, one “dispatcher” node is
configured to run mSwitch, either in Prism mode or as a learning bridge. This allows for a
fair comparison between the Prism and non-Prism scenarios, by using a software switch
in all cases. A baseline netperf4 TCP network benchmark results in 19.5 Gb/s maximum
throughput for 128 MB of bulk data over the 40G setup with the Mellanox adapters, i.e., the
bottleneck is not the software switch. Full wire speed is achieved with 10G.

The backends are running Hyrise on all 16 cores, one acts as master with the other as replica.
In order to make sure that Hyrise itself is not the bottleneck, a minimal stored procedure
returns a database result with the requested number of bytes. The single-threaded Prism
controller executes bound to a single core on the same “dispatcher” machine as mSwitch. For
experiments not involving Prism, the other “dispatcher” node is either running the Hyrise
dispatcher with its client threads bound to four cores or HAProxy 1.7.9 in a multiprocess
configuration with both its backend and frontend processes also bound to four cores.

Measurement data is obtained on the clients by running one single-threaded instance of the
wrk> HTTP benchmark tool. Client transactions result in response payload sizes between
1B and 128 MB, which are sampled for 20 s using one persistent connection each. The
results of the two clients then are aggregated.

3.2 Experimental Results

Figure 4 shows the throughput results for the different dispatcher approaches for the 10 and
40G experiments. A subset of the results is summarized in Table 1. Throughput is provided
in terms of HTTP payload in all cases, i.e., from the client/user perspective. The main
result is that, for payload sizes over 1 MB, Prism outperforms the other two dispatchers by
up to 2x (the number of client/backend nodes). This is because for the Hyrise dispatcher
and HAProxy, each payload byte needs to traverse the dispatcher (see Figures 1b and 3a,
respectively), which in a typical datacenter fabric is connected via a single 10 or 40G link to
the top-of-rack switch. This limits both cases to at most 10 Gb/s and 40 Gb/s, respectively.

In the 10G experiment, the Hyrise dispatcher and HAProxy achieve almost the physical limit
of 10 Gb/s for payload sizes over 16 MB. However, the maximum measured throughput in
the 40G experiment is only 18.9 Gb/s for the Hyrise dispatcher and 19.4 Gb/s for HAProxy,
demonstrating the overheads that limit performance over today’s faster network fabrics.

4 http://www.netperf.org/
5 https://github.com/wg/wrk

Eliminating the Bandwidth Bottleneck of Central Query Dispatching 103

Throughput [Gb/s] Result Prism Dispatcher HAProxy
40 Payload Unit 10G 40G 10G 40G 10G 40G
20| — Pisma0e I B Mbis 0.0 008 014 0.1l 009 0.1l

o Prism 10G 8 B Mbls 079 064 12 08 074 060
1077 = B!SPatc:ef‘;gg 64 B Mbls 63 51 93 70 58 48
54..| -o- Dispatcher .
oy 406 512 B Mbls 50 41 63 55 42 44
259 . LaProxy 106 4 KB Mb/s 378 321 396 324 303 248
1.25 32 KB Gbs 24 22 17 21 14 13
1 256 KB Gbs 72 91 61 104 48 95

102 M | MB Gbs 939 172 84 169 75 10.

104] e 2 MB Gb/s 119 203 90 189 84 99
T e e e T 16 MB Gbs 177 378 95 181 93 177
128 MB Gb/s 188 39.0 96 179 96 194

Payload

Fig. 4: Dispatcher throughputs

" Tab. 1: Selected throughput measurements from Figure 4.
for varying payloads.

Prism does not share this limitation, because clients and backend servers are communicating
directly after a TCP connection has been redirected, i.e., responses are directly sent to
the clients, taking advantage of the inherent fan-out in the fabric. Consequently, Prism
throughput is only limited by the speed of the network fabric (10G or 40G) or the processing
capacity of the backends, whichever is lower. In the 10G case, Prism achieves 18.8 Gb/s,
which is close to the physical limit of 2 X 10 Gb/s and twice as high as for the Hyrise
dispatcher and HAProxy. In the 40G case, Prism reaches 39.1 Gb/s, again about twice as
high as the other two dispatcher approaches.

For payload sizes below 4 KB, the Hyrise dispatcher outperforms Prism’s and HAProxy’s
throughput by up to 1.5x. For small responses, Prism cannot amortize the connection
hand-off overheads. We observed that HAProxy’s performance for small payload sizes is
reduced by interprocess communication overheads (see Section 4 for more details), which
appear to be higher than for the Hyrise dispatcher.

No Dispatcher Prism Dispatcher HAProxy
10G 40G 10G 40G 10G 40G 10G 40G
59us 70us 161us 214ps 104ps 144 ps 167us 151ps

Tab. 2: Average user latencies for querying 1B payload.

To evaluate the overhead of query dispatching in comparison to direct client-backend
communication, Table 2 shows the user perceived query latencies for 1 B payloads. Latency
is measured from sending the request until the reception of the response, including network
transmission and database processing times. Without an intermediate dispatcher, the latency
is about 59 ps in the 10G and 70 ps in the 40G experiment. Adding a dispatcher, increases
the latency by about 45 s to 144 ps depending on the dispatching approach and NIC type.
Among the dispatching approaches, the latency of the Hyrise dispatcher is the lowest.

104 Stefan Klauck et al.

4 Discussion

In this section, we discuss several aspects of query-based load-balancing. First, we summarize
our research findings (see Section 4.1). Based on these, we propose a hybrid query
dispatching approach in Section 4.2. In the following, we discuss the scalability of central
query dispatching in Section 4.3.

4.1 Research Findings

The experiments show that no single dispatcher approach is best across all payload sizes.
The Hyrise dispatcher performs best for small payloads, because the overhead of Prism’s
connection hand-over does not amortize if the payload fits into a few network packets. Prism
outperforms the Hyrise dispatcher for larger payloads, because the majority of payload bytes
can be directly handled by the switch.

HAProxy was not able to compete with either of the two, despite a lot of effort on fine-
tuning its configuration. Although a single-process HAProxy configuration delivered best
throughputs for small payload sizes below 0.5 KB compared to multiprocess setups, it peaked
at only 10 Gb/s for payloads above 2 MB in the 40G case. Further, we did not observe any
performance benefits from HAProxy taking advantage of socket splicing [MB99] compared
to the Hyrise dispatcher, which has to copy all data to and from user space. These findings
indicate that although an off-the-shelf load-balancer can be used, it has severe performance
limitations, besides its lack of flexibility (see Section 2.2).

4.2 Hybrid Approach

Based on our measurements, we propose a hybrid load-balancing approach, which uses
Prism for queries returning large results and the Hyrise dispatcher for all other requests.
This requires knowledge about response sizes of individual queries, which can be calculated
(or estimated) during the result set serialization. Hence, the connection hand-off has to be
postponed until the response size is determined and must be initiated by the backend.

4.3 Scalability

Additional throughput can be achieved with additional and/or faster hardware. First, we can
scale-up the dispatcher with additional and/or faster NICs. However, this requires efficient
software to actually take advantage of the hardware. Due to its improved usage of hardware
and preexisting software, Prism is expected to provide the best price-performance ratio in
this regard.

Eliminating the Bandwidth Bottleneck of Central Query Dispatching 105

Further, we can hide multiple dispatchers behind a virtual IP, using network-level load-
balancing as the first and query-level load-balancing as the second step. Network-level
load-balancers can additionally aggregate multiple requests to avoid the network overhead
for many connections sending small messages. Especially transactional databases, which
are able to process millions of small queries per second, require query batching [Tul3].

5 Related Work

Efficient query dispatching is a research field combining database and network aspects. On the
database side, clustered databases with a single entry point require query dispatching. Cecchet
et al. summarize different approaches for replicated databases and discuss load-balancing
alternatives [CCAO08]. Database load-balancing research focuses on equal distribution of
load, such as the Tashkent+ load-balancer [EDZ07], rather than efficient load-balancing
from a networking perspective. Consequently, there is a lack of focus on throughput and
latency measurements. Our work investigates scenarios where query dispatching and the
relaying of database responses can become the bottleneck. These scenarios range from
thousands of small transactions [Tul3] as one extreme to large data transfers from the
database [RM17] as the other extreme. Besides networking as database client interface, high
performance networks are a relevant topic for distributed query processing [Bil6, R615].
Associated research includes microbenchmarks for single connection RDMA and Ethernet,
but no switching measurements that are relevant for query load-balancing.

On the networking side, the focus in recent years has been on large-scale network-level
load-balancing, especially on distributing the ingress load of hyperscalar datacenters onto
backend servers at connection-open time. Proxy approaches, in which an intermediary
remains in the communication path and can therefore provide finer-grained operations than
simple load-balancing, have somewhat fallen out of favor, due to their perceived higher
overheads. Hayakawa et al. present related work in this space [Hal7].

6 Conclusion

Many scale-out database systems use a central query load-balancer that decides where to
send individual client queries. For clusters serving many thousands of requests and returning
large objects or data sets, the query dispatcher and the network fabric connecting it to
the clients and backend servers can become a bandwidth bottleneck. Prism redirects TCP
connections and allows database backends to directly respond to clients without changing
the clients. We integrated Prism into an in-memory database and compared its performance
against the common dispatching architecture in which each query and result is routed via
a single node. The traditional dispatcher architecture provided the highest throughput for
small database responses, whereas the Prism approach significantly outperformed it for
larger payloads. We propose to use a hybrid load-balancing approach that uses Prism’s
connection hand-over on demand for large payloads.

106 Stefan Klauck et al.

References

[Bil6]

[Bol4]

[CCAO08]

[Cul0]

[EDZ07]

[Gr10]

[Hal7]

[Hol5]

[MB99]

[RJ17]

[RM17]

[RoO15]

[Sc15]

[Sel6]

[Ta]

[Tul3]

Binnig, Carsten; Crotty, Andrew; Galakatos, Alex; Kraska, Tim; Zamanian, Erfan: The
End of Slow Networks: It’s Time for a Redesign. PVLDB, 9(7):528-539, 2016.

Bosshart, Pat et al.: P4: programming protocol-independent packet processors. Computer
Communication Review, 44(3):87-95, 2014.

Cecchet, Emmanuel; Candea, George; Ailamaki, Anastasia: Middleware-based database
replication: the gaps between theory and practice. In: SIGMOD. pp. 739-752, 2008.

Curino, Carlo; Zhang, Yang; Jones, Evan P. C.; Madden, Samuel: Schism: a Workload-
Driven Approach to Database Replication and Partitioning. PVLDB, 3(1):48-57, 2010.

Elnikety, Sameh; Dropsho, Steven G.; Zwaenepoel, Willy: Tashkent+: memory-aware load
balancing and update filtering in replicated databases. In: EuroSys. pp. 399-412, 2007.

Grund, Martin; Kriiger, Jens; Plattner, Hasso; Zeier, Alexander; Cudré-Mauroux, Philippe;
Madden, Samuel: HYRISE - A Main Memory Hybrid Storage Engine. PVLDB, 4(2):105—
116, 2010.

Hayakawa, Yutaro; Eggert, Lars; Honda, Michio; Santry, Douglas: Prism: a proxy architec-
ture for datacenter networks. In: SoCC. pp. 181-188, 2017.

Honda, Michio; Huici, Felipe; Lettieri, Giuseppe; Rizzo, Luigi: mSwitch: a highly-scalable,
modular software switch. In: SOSR. pp. 1:1-1:13, 2015.

Maltz, David A.; Bhagwat, Pravin: TCP Splice for application layer proxy performance. J.
High Speed Networks, 8(3):225-240, 1999.

Rabl, Tilmann; Jacobsen, Hans-Arno: Query Centric Partitioning and Allocation for
Partially Replicated Database Systems. In: SIGMOD. pp. 315-330, 2017.

Raasveldt, Mark; Miihleisen, Hannes: Don’t Hold My Data Hostage - A Case For Client
Protocol Redesign. PVLDB, 10(10):1022-1033, 2017.

Rodiger, Wolf; Miihlbauer, Tobias; Kemper, Alfons; Neumann, Thomas: High-Speed Query
Processing over High-Speed Networks. PVLDB, 9(4):228-239, 2015.

Schwalb, David; Kossmann, Jan; Faust, Martin; Klauck, Stefan; Uflacker, Matthias; Plattner,
Hasso: Hyrise-R: Scale-out and Hot-Standby through Lazy Master Replication for Enterprise
Applications. In: IMDM@VLDB. pp. 7:1-7:7, 2015.

Serafini, Marco; Taft, Rebecca; Elmore, Aaron J.; Pavlo, Andrew; Aboulnaga, Ashraf;
Stonebraker, Michael: Clay: Fine-Grained Adaptive Partitioning for General Database
Schemas. PVLDB, 10(4):445-456, 2016.

Tarreau, Willy: , The Reliable, High Performance TCP/HTTP Load Balancer. https:
//www.haproxy.org.

Tu, Stephen; Zheng, Wenting; Kohler, Eddie; Liskov, Barbara; Madden, Samuel: Speedy
transactions in multicore in-memory databases. In: SOSP. pp. 18-32, 2013.

https://www.haproxy.org
https://www.haproxy.org

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 107

Ja-(zu-)SQL: Evaluation einer SQL-Skriptsprache fiir
Hauptspeicherdatenbanksysteme

Maximilian Schiile! Linnea Passing,2 Alfons Kemper,3 Thomas Neumann?®

Abstract: Grofie Datenmengen in Wirtschaft und Wissenschaft werden klassischerweise in Daten-
banksystemen verwaltet. Um die Daten fiir maschinelles Lernen sowie fiir die Datenanalyse zu nutzen,
ist ein zeitintensiver zyklischer Transformations- und Verschiebeprozess nétig, da die Daten hierfiir
in anderen Formaten oder schlicht in anderen Plattformen vorliegen miissen. Forschungsarbeiten
der letzten Jahre widmen sich der Aufgabe, Datenverwaltung und Datenanalyse in einem System zu
integrieren, um teure Datentransfers zu vermeiden.

Diese Arbeit untersucht die Leistungsfihigkeit gespeicherter Prozeduren (stored procedures) zur
Implementierung von Data-Mining-Algorithmen in Datenbanksystemen. Grundlage hierfiir bildet
HyPerScript, die PL/SQL-édhnliche Skriptsprache des Hauptspeicherdatenbanksystems HyPer. Ins-
besondere evaluieren wir die prototypische Implementierung von fiinf Algorithmen, die ganz ohne
separates Datenanalysesystem auskommt.

1 Einleitung

Mit wachsenden Leistungsanforderungen bei der Datenverarbeitung gewinnen sowohl
Hauptspeicher-Datenbanksysteme fiir die Datenhaltung als auch die automatisierte Verarbei-
tung groBer Datenmengen an Bedeutung. Wenn beide Doménen kombiniert werden, entfillt
das zyklische Extrahieren, Transformieren und Laden von Daten (sogenannter ETL-Prozess).
Somit kdnnen die Daten in Echtzeit statt um die Prozessdauer verspitet analysiert werden.
Datenbanksysteme bieten prozedurale Sprachen wie PL/SQL bis hin zu in C geschriebene
Erweiterungen an, um innerhalb des Datenbanksystems Algorithmen zu spezifizieren.

Neben der Moglichkeit, Algorithmen in beliebigen prozeduralen Sprachen zu implementie-
ren, integrieren verschiedene Datenbanksysteme Data-Mining-Algorithmen direkt. Fiir auf
PostgreSQL basierende Datenbanksysteme stellt MADIib eine Bibliothek an Funktionen zur
Datenanalyse bereit. Das Projektziel ist, eine Bibliothek an Erweiterungen bereitzustellen,
die an die Pakete aus GNU R angelehnt ist. Fiir eine Echtzeitdatenanalyse in Hauptspei-
cherdatenbanksystemen stellt HyPer Operatoren fiir die Assoziationsanalyse mit Apriori,
Clusteranalyse mit k-Means und DBSCAN und Graphanalyse mit PageRank bereit. Diese

I'tu Miinchen, Lehrstuhl fiir Datenbanksysteme, Boltzmannstraf3e 3, 85748 Garching, m.schuele @tum.de
2TU Miinchen, Lehrstuhl fiir Datenbanksysteme, Boltzmannstraf3e 3, 85748 Garching, passing@in.tum.de
3TU Miinchen, Lehrstuhl fiir Datenbanksysteme, Boltzmannstra3e 3, 85748 Garching, kemper@in.tum.de
4TU Miinchen, Lehrstuhl fiir Datenbanksysteme, Boltzmannstrafie 3, 85748 Garching, neumann@in.tum.de

©@@®@® doi:10.18420/btw2019-08

https://creativecommons.org/licenses/by-sa/4.0/
m.schuele@tum.de
passing@in.tum.de
kemper@in.tum.de
neumann@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-08

108 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

Operatoren sind Teil der Algebra und werden von HyPer in die ganzheitliche Anfrageoptimie-
rung eingebunden. Vordefinierte Operatoren kommen dem Anspruch, Datenbanksysteme
um beliebige Anwendungslogik zu erweitern, nur begrenzt nach.

Um Datenbanksysteme fiir beliebige Algorithmen und maschinelles Lernen zu erweitern
ohne jeweils einen Operator zu implementieren, ist eine dominenspezifische Sprache
notig, die prozedurale Konstrukte mit eingebettetem SQL bereitstellt. Eine prozedurale
Skriptsprache kombiniert mit der deklarativen Anfragesprache SQL ermdglicht nutzerseitig
definierte Funktionen (user defined function, UDF) in kompakterer Darstellung als rein
imperative Sprachen.

Weitere Vorteile einer Skriptsprache, bei der die Anwendungslogik in das Datenbanksystem
hinein verlagert wird, sind die Integration in die Anfrageoptimierung des Datenbanksystems
und ein geringerer Transfer von Daten. Als gespeicherte Prozeduren sind UDF's Teil des
Anfrageplans und somit Teil der ganzheitlichen Anfrageoptimierung. Zudem erlaubt die
Leistungssteigerung der Datenbankserver durch Verwendung moderner Hardware, diese
fiir mehr als nur reine Datenverwaltungsaufgaben zu verwenden. Damit Datenbankserver
mehr Anwendungslogik iibernehmen konnen, muss es fiir Datenbankanwender moglich
sein, Algorithmen fiir die Zielsprache universell zu entwickeln. Um den Funktionsumfang
einer solchen Skriptsprache identifizieren zu kdnnen, ist relevant, wie sich Algorithmen
abstrahieren lassen und welche Bausteine dafiir unabdingbar sind.

In dieser Arbeit identifizieren wir notwendige Bausteine, indem wir ausgewéhlte Data-
Mining/Machine-Learning-Algorithmen (Apriori, DBSCAN, k-Means, PageRank, Lineare
Regression) in HyPerScript, der Skriptsprache des Hauptspeicherdatenbanksystems HyPer,
implementieren. AnschlieBend vergleichen wir die Laufzeit und Skalierbarkeit der Algorith-
men im Vergleich zu bereits implementierten Operatoren [Pal7], die das Datenbanksystem
bereitstellt. Die Arbeit liefert folgende Beitrige:

. Die Vorstellung von HyPerScript als exemplarische Erweiterung eines Hauptspeicher-
datenbanksystems, die es Nutzern erlaubt, Funktionen in um prozedurale Ausdriicke
erweitertem SQL zu formulieren.

. Die beispielhafte Beschreibung einer betriebswirtschaftlichen Anwendung in der
Form einer TPC-C-Anfrage in HyPerScript. Dabei handelt es sich um den priméren
Anwendungsfall der Skriptsprache.

. Die Erweiterung von SQL um einen Tensor-Datentyp, um bestimmte Datenanalyse-
Algorithmen zu ermdglichen.

. Die Analyse des Potentials einer Skriptsprache in Datenbanksystemen, um beliebige
Algorithmen zu formulieren; demonstriert an den Algorithmen PageRank, Apriori,
lineare Regression, k-Means und DBSCAN, die bereits als feststehende Operatoren
in HyPer existieren.

Ja-(zu-)SQL 109

. Eine umfangreiche Evaluierung von HyPerScript-Funktionen als stored procedures
im Vergleich zu implementierten Operatoren.

Eine umfassende und performante doménenspezifische Skriptsprache bildet die Grundlage
fiir die Entwicklung einer deklarativen Sprache. Eine auf SQL basierende, prozedural-
deklarative Sprache ermoglicht Datenanalysten, unabhéngig vom darunterliegenden System
zu programmieren. Die Plattformunabhingigkeit und die Wiederverwendbarkeit von SQL
erhoht den Anreiz, komplexe Algorithmen bereits im Datenbanksystem auszufiihren.

Die Arbeit ist wie folgt gegliedert: Nach einem Uberblick iiber verwandte Arbeiten und
einer Einfithrung in HyPerScript erfolgt eine Vorstellung der implementierten Algorithmen.
Die Evaluation beurteilt die Leistungsfihigkeit der Skriptsprache im Vergleich zu den in
HyPer integrierten Operatoren. Die Zusammenfassung diskutiert die Ergebnisse in Hinblick
spezifischer Sprachen fiir die Datenanalyse.

2 Verwandte Arbeiten

Im Folgenden erldutern wir aktuell in der Praxis relevante Systeme und den Stand der
Forschung, Algorithmen zur Wissensgewinnung in Datenbanksysteme zu integrieren.

Die code-kompilierenden, SQL-basierten Hauptspeicherdatenbanksysteme EmptyHea-
ded [Ab17] und HyPer [KN11] unterstiitzen bereits einige Data-Mining-Algorithmen. Dazu
stellt EmptyHeaded eine Schnittstelle fiir SQL-Abfragen und andere Algorithmen bereit,
die in einer iibergeordneten Sprache wie Python adressiert werden. Das dieser Arbeit
zugrundeliegende Hauptspeicherdatenbanksystem HyPer ist ein hybrides OLTP und OLAP
Datenbanksystem, welches parallel Echtzeit-Transaktionen verarbeiten sowie mehrfache
analysierende Anfragen ausfiihren kann. Es war bahnbrechend fiir die Kompilierung anstelle
von Interpretation von SQL-Anfragen [Nel 1], bietet einige Data-Mining-Algorithmen als
feststehende Operatoren als Teil der Algebra an und integriert sie somit in die Anfrageopti-
mierung [Pal7; Th15].

Die fiir statistische Analysen verbreitete Open-Source-Anwendung GNU R 7 bietet Module
wie fiir die hier behandelten Algorithmen an, die sich iiber eine eigene Kommandozeile
steuern lassen. Diese Module sind vergleichbar mit den in HyPer angebotenen Operatoren,
denn beide (sowohl die Module als auch die Operatoren) repréisentieren Bausteine mit einer
hart kodierten Funktionalitit. Wenn man neue Bausteine hinzufiigen oder die bestehenden
verdndern mochte, so miissen in C++ neue Pakete (GNU R) bzw. neue Operatoren (HyPer)
entwickelt werden. Die Alternative zur Neuentwicklung stellen in R definierbare Funktionen
dar, fiir die prozedurale Sprachkonstrukte wie Schleifen und weitere Kontrollstrukturen
bereitstehen. Das Gegenstiick, um Funktionen in Datenbanksystemen zu definieren, sind
die in den nachfolgenden Kapitel vorgestellten stored procedures mit HyPerScript.

7R http://www.r-project.org/

http://www.r-project.org/

110 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

Neben GNU R existieren weitere Programme, wie das davon fiir performante Datenanalysen
abgeleitete Julia®, das, wie unser HyPerScript, LLVM-Code generiert. Fiir maschinelles Ler-
nen, etwa, um neuronale Netze zu trainieren, sind Python mit SciPy® oder TensorFlow [Ab16]
ausgelegt.

Ein vergleichbarer Ansatz zu mit HyPerScript kompilierten Funktionen benennen Crot-
ty et. al. [Cr15]. Ihr Ansatz kompiliert, kombiniert und optimiert beliebige Funktionen (User
Defined Functions) zu LLVM-Code, um Vektorinstruktionen und Pipelining auf Datensétzen
zu nutzen. Eine Gemeinsamkeit ist die Kompilierung der nutzerseitig definierten Funktionen
zu LLVM-Code (obwohl das Suffix ,,Script* in HyPerScript falschlicherweise zur Annahme
verleitet, die Funktionen wiirden interpretiert). Um eine bessere Laufzeit von PostgreSQL
zu erhalten, kompiliert der Ansatz in [BG16; BG17] SQL-Anfragen zu LLVM-Code. Eine
weitere Modifikation von PostgreSQL ist die Erweiterung von PL/pgSQL um Funktionen
hoherer Ordnung [GSU13; GU13]. Die Integration algebraischer Datentypen in relationale
Datenbanksysteme [Gil3] stellt eine weitere Herausforderung dar.

Eine zu HyPerScript vergleichbare Programmiersprache bietet SAP HANA mit SQLS-
cript [BMM13]. SQLScript erweitert SQL um prozedurale und funktionale Prozeduren,
erlaubt MapReduce auf analytischen Anfragen und erweitert Rekursion fiir die Graphanalyse.
Alternativ zu prozeduralen Erweiterungen erweitert FunSQL [Bil2] SQL um funktionale
Konstrukte. Die Erweiterung intendiert, dhnlich wie diese Arbeit, die Verlagerung von
Applikationslogik auf Datenbankserver.

Um Applikationlogik auf Datenbankserver verlagern zu konnen, hilft eine eigene Sprache,
die zu SQL iibersetzt. Ein Beispiel hierfiir ist Ferry [Sc10], eine Metasprache mit den
Konstrukten for, where, group by, order by und return. Ferry wird zuerst aus gingigen
Skript- oder Programmiersprachen erzeugt und anschlieend in SQL {iibersetzt.

3 HyPerScript

HyPerScript ist die prozedurale Sprache zu HyPer, analog zu PL/SQL in Oracle [Lo08], zu
PL/pgSQL!0 in PostgreSQL oder zu SQLScript in SAP HANA [BMM13]. Fiir transaktionale
Anwendungen in HyPer entwickelt, erlaubt HyPerScript es, TPC-C-, TPC-E- und TPC-H-
Benchmarks auszufiihren. Auflerdem kénnen mit der um prozedurale Ausdriicke erweiterten
SQL-Syntax beliebige Algorithmen formuliert werden.

Die in HyPerScript definierten Prozeduren werden wihrend der Kompilierungsphase
in LLVM-Code iibersetzt. List. 1 zeigt die Sprachspezifikation in EBNF. HyPerScript
verwendet die im SQL:2003-Standard [EiO4] spezifizierten Sprachkonstrukte inklusive
Fensterfunktionen (window functions). Die SQL-Befehle lassen sich in prozedurale Kon-
strukten wie Schleifen (while<Bedingung>{...}) und Iterationen (select index from

8 Julia http://julialang.org/
9 SciPy http://www.scipy.org/
10 PL/pgSQL https://www.postgresql.org/docs/10/static/plpgsql.html

http://julialang.org/
http://www.scipy.org/
https://www.postgresql.org/docs/10/static/plpgsql.html

Ja-(zu-)SQL 111

Statement = ((VarDeclaration | VarDefinition | TableDeclaration
| SelectStatement | EmbeddedSQL | ReturnStatement
| IfStatement | WhileStatement | ControlStatement | FunctionCall) ";")* ;
VarDeclaration = "var" NAME Type "=" Expression ;
VarDefinition = NAME "=" Expression ;
TableDeclaration = "table" NAME "(" NAME Type ("," NAME Type)* ")";
SelectStatement = SQLSelect ("{" Statement "}") ("else" "{" Statement "}") ;
EmbeddedSQL = SQLInsert | SQLUpdate | SQLDelete | CSVCopy ;
ReturnStatement = "return" NAME | "rollback" ;
IfStatement = "if" "(" Expression ")" "{" Statement "}" "else" "{" Statement "}" ;
ControlStatement = "break" | "continue" ;
WhileStatement = "while" "(" Expression ")" "{" Statement "}" ;
FunctionCall = NAME "(" Expression ("," Expression)* ")";

List. 1: Sprachdefinition von HyPerScript: SQL{Select, Insert,Update,Delete} entsprechen den
SQL:2003-Befehlen, Type den SQL-Datentypen, Expression den SQL-Ausdriicken. Neben klassischen
Ausdriicken prozeduraler Sprachen ermoglicht EmbeddedSQL auf einzelnen Tupeln der SQL-Anfrage
Zu operieren.

create or replace function insert_until(anzahl integer not null) as $$
select index as i from sequence(0,anzahl){
var rand = random(100); if (rand = 13) { continue }; insert into sample(rand));
}
$$ language 'hyperscript' strict;

List. 2: Beispielhafte User-Defined-Function mit HyPerScript: Hier werden anzahl viele Zufallszahlen
in eine Relation namens sample eingefiigt, randomisiert zwischen ® und 100, eine Zahl 13 soll
tibersprungen werden.

sequence(1,10){...}) mit den Steuerungsbefehlen break und continue und Bedingungen
(if(<Bedingung>){...}) einbinden. Zusitzlich lassen sich temporire Tabellen erstellen,
auf Basis der SQL-Datentypen Variablen deklarieren und definieren (var foo int[]='{}")
und ebenfalls als Parameter beim Funktionsaufruf mit tibergeben oder zuriickgeben.

List. 2 demonstriert eine beispielhafte Anwendung von HyPerScript. Mittels deklarativem
SQL wird ein Intervall definiert, das hier als Iteration dhnlich einer For-Schleife genutzt
wird. Auf die einzelnen Ergebnistupel kann innerhalb des Geltungbereiches zugegriffen und
diese auch wieder in SQL-Befehlen verwendet werden. In diesem Fall wird eine Relation
namens sample mit Zufallswerten befiillt.

3.1 HyPerScript mit Tensoroperationen

Zusitzlich zu prozeduralen Kontrollbefehlen erachten wir Tensoroperationen als elementar
fiir die Eignung von Datenbanksystemen fiir maschinelles Lernen, um zum Beispiel lineare
Regression numerisch zu 10sen. Daher verwendet HyPer einen zu Tensoren erweiterten Array-
Datentyp, der als Attribut in Datenbankschemata Tensoren von beispielsweise Ganzzahlen
oder Gleitkommazahlen erlaubt. Die Array-Operationen erfolgen auf den Attributen von
Relationen als Teil der Projektion im SELECT-Teil einer SQL-Anfrage. Das umschlieft die
folgenden Anwendungen auf Tensoren:

112 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

1. Algebra: Dazu gehoren Tensorprodukt, -addition, -subtraktion und das Skalarprodukt,
das Invertieren, Transponieren und Potenzieren von Tensoren.

2. Erzeugen: Neben dem Initialisieren mit ARRAY [<WERTE>] bzw. {<WERTE>}, benotigen
wir die Identitidtsmatrix array_id(<Dimension>) und einen Tensor gefiillt mit einem
angegebenen Wert (array_£ill (<WERT>, <Dimensionen>)).

3. Zugriff: Zugriff erfolgt iiber array_access(<ARRAY>,<Indizes>) bzw.
ARRAY[<Index>]. Die Funktion zum Schneiden array_slice(<ARRAY>,<Indizes>)
erlaubt eine Teilmenge eines Arrays zu extrahieren, um Daten zum Beispiel in Test-
und Trainingsmenge zu teilen.

4. Verindern: Nach Erzeugung der Tensoren miissen einzelne Elemente effizient veréin-
dert werden, dazu dient array_set (<ARRAY>, <WERT>,<Indizes>). Das Gegenstiick
zum oben erwihnten Schneiden ist das Konkatenieren von Arrays <ARRAY> | | <ARRAY>.

5. Mengenoperationen: Um Teilmengen von Arrays zu identifizieren, braucht ein
Datenbanksystem Mengenoperationen wie A C B als <ARRAY> <@ <ARRAY>. Um
Elemente in einer Teilmenge zu finden, steht a € A als a ANY= A zur Verfiigung.

6. Normalisieren: unnest (<ARRAY>) als Gegenstiick zum Initialisieren von Arrays
extrahiert die Elemente in einzelne Tupel.

Die eingefiihrten Tensoroperationen erlauben die Verarbeitungen von Datensitzen aggregiert
zu Tensoren. Als Beispielanwendungen mit Tensoren sind in List. 3 die Kreuzvalidierung
auf einem Datensatz und in List. 4 die bindre Exponentiation in HyPerScript angefiihrt.
Die bindre Exponentiation benétigt die Identititsmatrix und die Multiplikation und steht
stellvertretend fiir die C++-Implementierung im Datenbanksystem. Die aufgefiihrte einfache
Kreuzvalidierung schneidet aus dem Datensatz jedes Tupel einmal heraus, um dieses
als Testmenge und die restlichen als Trainingsmenge zu verwenden. Darauf wird lineare
Regression (in einer eigenen Funktion) angewendet, um die optimalen Gewichte zu berechnen.
Mit diesen wird der Vorhersagefehler auf dem herausgeschnitten Datensatz bestimmt.

create or replace function linearregression(x float[][], y float[][]) returns float[] as $$
return (array_transpose(x)*x)A-1*(array_transpose(x)*y);
$$ language 'hyperscript' strict;
create or replace function cross_validate(x float[][], y float[][]) returns float as $$
var error=0; var n=array_length(x,2); var m=array_length(x,1);
select index i from sequence(2,n-1){
var weights_o=linearregression(array_slice(x,1,i-1,1,m)||array_slice(x,i+1,n,1,m),
array_slice(y,1,i-1,1,n)||array_slice(y,i+1,n,1,1));
error=error+((array_slice(x,i,i,1,m)*weights_o) [1]1[1]-y[i]1[1])42;
}
error=error/(n-2); return error;
$$ language 'hyperscript' strict;

List. 3: Einfache Kreuzvalidierung in HyPerScript: Mittels array_slice() und der Konkatenation
wird schrittweise eine Zeile aus dem Datensatz herausgeschnitten und als Testdatensatz verwendet.
array_slice() erwartet als Argument den Tensor und fiir jede Dimension die Start- sowie Endposition.

Ja-(zu-)SQL 113

create or replace function pow(a_in float[][], e_in int) returns float[] as $$
var a=a_in; var e=e_in; if(e<®) { e=e*-1; a=array_transpose(a); }
var mask = 1<<63; var result = array_identity(array_ndims(a));
while(mask>0){ result=result*result; if(e&mask>0){ result=result*a; } mask=mask>>1; }
return result;
$$ language 'hyperscript' strict;

List. 4: Bindre Exponentiation pow() von Tensoren implementiert in HyPerScript: als Eingabe wird ein
Tensor und ein Exponent erwartet, eine Schleife mit Multiplikationen berechnet die Exponentiation.

3.2 HyPerScript fiir betriebswirtschaftlich transaktionale Anwendungen

HyPerScript erlaubt iiber die SQL-Schnittstelle betriebswirtschaftlich transaktionale Anwen-
dungen auszufiihren. Beispiele hierfiir sind die TPC-C-, TPC-E- und TPC-H-Benchmarks
des Transaction Processing Performance Councils!!. So modelliert der TPC-C-Benchmark
ein Handelsunternehmen mit eingehenden Auftrigen (New-Order) von Kunden und misst,
wie viele schreibende Transaktionen ein Datenbanksystem pro Zeiteinheit verarbeiten kann.

create type newOrderPosition as (line_number int not null,supware int not null,itemid int not null, gty
int not null);
create function newOrder (w_id int not null, d_id smallint not null, c_id int not null, positions setof
newOrderPosition not null, datetime timestamp not null) as $$
select w_tax from warehouse w where w.w_id=w_id;
select c_discount from customer c where c_w_id=w_id and c_d_id=d_id and c.c_id=c_id;
select d_next_o_id as o_id,d_tax from district d where d_w_id=w_id and d.d_id=d_id;
update district set d_next_o_id=o_id+1 where d_w_id=w_id and district.d_id=d_id;
select count(*) as cnt from positions;
select case when count(*)=0 then 1 else ® end as all_local from positions where supware<>w_id;
insert into "order" values (o_id,d_id,w_id,c_id,datetime,null,cnt,all_local);
insert into neworder values (o_id,d_id,w_id);
update stock
set s_quantity=case when s_quantity>=qty+10 then s_quantity-qty else s_quantity+91-qty end,
s_remote_cnt=s_remote_cnt+case when supware<>w_id then 1 else 0 end,
s_order_cnt=s_order_cnt+1, s_ytd=s_ytd+qty
from positions where s_w_id=supware and s_i_id=itemid;
insert into orderline
select o_id,d_id,w_id,line_number,itemid, supware,null,qty,
qty*i_price*(1l.0+w_tax+d_tax)*(l.0-c_discount),
case d_id when 1 then s_dist_01 when 2 then s_dist_02 when 3 then s_dist_03 when 4 then
s_dist_04 when 5 then s_dist_05 when 6 then s_dist_06 when 7 then s_dist_07 when
8 then s_dist_08 when 9 then s_dist_09 when 10 then s_dist_10 end
from positions, item, stock
where itemid=i_id
and s_w_id=supware and s_i_id=itemid
returning count(*) as inserted;
if (inserted<cnt) rollback;
$$ language 'hyperscript' strict;

List. 5: HyPerScript-Funktion newOrder) des TPC-C-Benchmarks: Die Funktion nimmt eine Menge
von Bestellpositionen positions fiir ein Warenhaus w_id eines Distrikts d_id von einem Kunden
c_id entgegen.

List. 5 zeigt die zugehdrige Prozedur in HyPerScript. Die Prozedur nimmt einen neuen
Auftrag aus mehreren Bestellpositionen (setof) fiir ein Warenhaus (w_id) von einem

W http://www.tpc.org

http://www.tpc.org

114 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

Kunden (c_id) in einem Distrikt (d_id) entgegen. Zunichst wird dieser Auftrag in der
Datenbank angelegt. AnschlieBend aktualisiert die Prozedur die Lagerbestinde in stock
und fiigt die Bestellposition zusammen mit dem berechneten Preis in orderline ein.

HyPerScript ermdglicht Attributwerte von SQL-Anfragen in Variablen zwischenzuspeichern,
um sie so wiederverwenden zu konnen. So werden beispielsweise der Steuersatz des Waren-
hauses und der Kundenrabatt in den Variablen w_tay und c_discount zwischengespeichert
und beim Einfiigen in die Relation orderline wiederverwendet.

Das Beispiel priift die Atomaritit und Konsistenz fiir Transaktionen, die implizit durch die
Verwendung eines Datenbanksystems gegeben ist. So iiberpriift die Prozedur am Ende, ob
die Bestellungen erfolgreich in orderline eingefiigt worden sind (die Zahl der eingefiigten
Bestellungen valide ist) und setzt andernfalls die Transaktion zuriick (rollback). AuBerdem
verdeutlicht das Beispiel die kompakte Schreibweise: Die HyPerScript-Prozedur kommt mit
weniger als 40 Zeilen aus, wihrend ein C++-Programm fiir dieselbe Funktion deutlich mehr
Zeilen beansprucht!2.

4 HyPerScript fiir Datenanalysealgorithmen

Neben den klassischen transaktionalen Anwendungen ermoglicht HyPerScript auch die
Ausfiihrung beliebiger Algorithmen im Datenbanksystem. In diesen Kapitel stellen wir
dazu beispielhaft Formulierungen einiger Algorithmen zur Datenanalyse dar. Um moglichst
verschiedene Bereiche der Datenanalyse abzudecken, wihlen wir grundlegende Algorithmen
aus Assoziationsanalyse (Apriori-Algorithmus), Clustering (k-Means und DBSCAN)),
Graphmetriken (PageRank) und Regression (lineare Regression). Modernes SQL — mit
Fensterfunktionen (window functions) und rekursiven temporiaren Tabellen (recursive
common table expressions) — ist bereits Turing-vollstindig. Mit HyPerScript lassen sich
Algorithmen jedoch teils deutlich kompakter und verstdndlicher formulieren.

Dabei folgen die HyPerScript-Formulierungen jeweils folgendem Aufbau: Fiir jeden Al-
gorithmus wird ein Schema als eigener Namensbereich definiert. Bei Aufruf der UDF
<Schemaname>.run() wird der Algorithmus ausgefiihrt. Das Ergebnis des Algorithmus wird
in eine Relation desselben Namensbereiches materialisiert. Die Logik der Algorithmen
wird groBteils in SQL-Funktionen ausgedriickt. Die UDF <Schemaname>.run() stellt diese
Funktionen zum eigentlichen Algorithmus zusammen, beispielsweise durch iterativen
Aufruf bis ein Abbruchkriterium erreicht wird.

Alle hier untersuchten Algorithmen sind in HyPer bereits als Operatoren vorhanden [Pal7;
Th15]. Das heif3t, sie wurden, dhnlich wie relationale Operatoren (etwa Hash-Join oder Aggre-
gation), im Datenbankkern implementiert und lassen sich kombinieren, um SQL-Anfragen
abzubilden. Die folgenden Abschnitte erldutern jeweils kurz den gewihlten Algorithmus,
stellen die Formulierung in HyPerScript dar und beschreiben die Vergleichsoperatoren. Im

12 ygl.: https://github.com/evanj/tpccbench/blob/master/tpcctables.cc

https://github.com/evanj/tpccbench/blob/master/tpcctables.cc

Ja-(zu-)SQL 115

anschlieBenden Evaluationskapitel werden Operatoren und HyPerScript-Formulierungen
miteinander verglichen.

4.1 Assoziationsanalyse

Der 1993 eingefiihrte Apriori-Algorithmus [AIS93] ist der bekannteste Vertreter im Bereich
der Assoziationsanalyse. Er basiert auf Warenkorbdaten, die als Tupel aus Transaktions-
nummer (tid) und Waren abgelegt werden (sales: {[tid,item]}). Zuerst zdhlt er haufig
vorkommende Item-Mengen, die mit einer minimalen relativen Haufigkeit (Support) von
mindestens sq in allen Warenkorben vorkommen und bildet anschlieBend Assoziationsregeln
daraus. Die Item-Mengen wachsen mit jeder Iteration um ein Element beginnend mit
der einelementigen Menge. Dabei ist die Anzahl der Iterationen und zu iiberpriifender
Mengen durch das Apriori-Prinzip begrenzt. Das Prinzip besagt, dass Mengen an Items,
deren Teilmengen nicht hédufig auftreten, selbst nicht hiufig auftretend sein konnen. List. 6
zeigt den Aufruf des integrierten Operators wie der Skript-Funktion mit einem minimalen
Support von 10 %, deren genaue Funktionsweisen kurz erklirt werden.

-- nativer Operator:
select * from apriori((table aprioriscript.sales),0.1,1);
HyPerScript
select aprioriscript.findFI(10); select * from aprioriscript.frequentitemsets;

List. 6: Aufruf des Apriori-Algorithmus als Operator wie als gespeicherte Prozedur.

Die Implementierung in HyPerScript (siehe List. 7) basiert auf zu Warenkorben aggregierten,
hiufig auftretenden Item-Mengen, die mit rekursivem SQL iterativ erweitert werden. Hier
werden die Arrays als Mengen verwendet und in jeder Iteration um ein Element erweitert.
Anschlieend wird die Haufigkeit der Tupel gezihlt. Dazu wird jedes Itemset mit jedem
Warenkorb anhand des Mengenoperators Tupel <@ Warenkorb verglichen.

create or replace function aprioriscript.findFrequentItemsets(minsupp integer not null) as $$
with recursive Erzeugung von Warenkoérben
transactions (tid, bucket) as (select tid, array_agg(item) from aprioriscript.sales group by tid),
-- hdufig auftretende 1-Item-Mengen
sales_supp as (select item from aprioriscript.sales group by item having count(*) >= minsupp),

frequentitemsets as (Items mit support >= minsupp
(select distinct array[p.item]::integer[] as items from sales_supp p) -- l-Item-Mengen [€ /[
union all (-- erweitere Item-Mengen um ein Element: Lj_; erweitert
select distinct array_append(t.items,p.item::integer)::integer[] -- [
from frequentitemsets t, sales_supp p
where minsupp <= (zdhle Support
select count(*) from transactions t2 -- C; € Cy . support(Cy) >= minsupp = C € [

where array_append(t.items,p.item::integer)::integer[] <@ (t2.bucket)
) and t.items[(select count(*) from unnest(t.items))]<p.item -- nur sortierte Arrays
)
insert into aprioriscript.frequentitemsets (select * from frequentitemsets);
$$ language 'hyperscript' strict;

List. 7: Ermittlung der hiufig auftretenden Item-Mengen fiir den Apriori-Algorithmus: Die Funktion
erhilt den minimalen Support s als Parameter {ibergeben und berechnet eine rekursiv wachsende
Relation mit hiufigen Itemsets, beginnend bei den einelementigen, also den Waren als einelementige
Arrays.

116 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

Der in HyPer implementierte Operator basiert auf der Speicherung der Elemente in
einem mit jeder Iteration wachsenden Prifixbaum. Besonderheiten der Implementierung in
HyPer sind die Parallelitét pro Iterationsschritt sowie die Behandlung von Duplikaten. So
beriicksichtigen die Assoziationsregeln die Héaufigkeit gleicher Elemente in Warenkorben.

4.2 Clustering

Ein weiterer wichtiger Bereich der Datenanalyse ist Clustering, also die Gruppierung
dhnlicher Datenpunkte. Mit k-Means [L182] und DBSCAN [Sc17] formulieren wir zwei
klassische Clustering-Algorithmen in HyPerScript, die liber ganz unterschiedliche Iterations-
muster verfiigen. k-Means weist in jeder Iteration jeden Datenpunkt dem nichstgelegenen
Cluster zu. Durch die Zuweisung verindert sich der Mittelpunkt der Cluster, wodurch sich
in der nichsten Iteration wiederum Zuordnungen dndern konnen. DBSCAN hingegen priift
fiir jeden Datenpunkt, ob in der Nihe ausreichend viele andere Datenpunkte liegen. Falls
ja und falls diese Datenpunkte bereits einem Cluster zugeordnet wurden, wird auch der
aktuell betrachtete Datenpunkt dem Cluster hinzugefiigt. Andernfalls wird ein neuer Cluster
begriindet. Falls sich nicht genug andere Datenpunkte in der Néhe befinden, wird der aktuell
betrachtete Datenpunkt als Noise deklariert. AnschlieBend wird der nichste Datenpunkt
gepriift. List. 8 zeigt den Aufruf der beiden Clustering-Algorithmen sowohl als Operator
wie als Skript-Funktion.

-- nativer Operator:
select * from kmeans((select x,y from kmeansscript.points),
(select x,y from kmeansscript.points LIMIT 5));
select * from dbscan((select x,y from dbscanscript.points),20,2);
-- HyPerScript:
select kmeansscript.run(5);
select dbscanscript.run(20,2);

List. 8: Aufruf der Clustering-Algorithmen in HyPer: Eingabedaten des k-Means-Operators sind die
Datenpunkte und die initialen Zentren (im dargestellten Fall £ = 5 zufillig gewihlte Datenpunkte).
Eingabe des DBSCAN-Operators sind ebenfalls die Datenpunkte, sowie als Parameter der Suchradius
fiir nahegelegene Datenpunkte € und die minimale Anzahl an Punkten pro Cluster minPts. Parameter
fiir die HyPerScript-Funktionsaufrufe sind ebenfalls £ fiir k-Means und € sowie minPts fiir DBSCAN.

Die HyPerScript-Implementierung fiir k-Means (s. List. 9) basiert auf der in HyPer besonders
effizient implementierten Fensterfunktion (window function) [Lel5], die pro Datenpunkt
eine Rangfolge der nichstgelegenen Clusterzentren berechnet. Aus den Mittelwerten der
zugeordneten Punkte werden dann die neuen Clusterzentren bestimmt. Diese zwei Schritte
werden wiederholt, bis die Zuordnung der Datenpunkte zu Clustern stabil ist.

Die DBSCAN-Implementierung [Hul7] (s. List. 10) basiert auf der rekursiven Erweiterung
von Clustern: Zuerst bildet jeder Punkt einen eigenen Cluster. AnschlieBend werden Cluster,
die weniger als € weit voneinander entfernt liegen, vereinigt. Sowohl k-Means als auch
DBSCAN liegen als in HyPer implementierte Operatoren vor. Der k-Means-Operator [Pal7]
erhilt als Eingabe die Datenpunkte sowie k initiale Clusterzentren. Im Normalfall wird

Ja-(zu-)SQL 117

create or replace function kmeansscript.run(centers integer not null) as $$
truncate kmeansscript.clusters;
insert into kmeansscript.clusters(select id,x,y,0 from (select *,rank() over (order by id) from
kmeansscript.points) where rank <= centers);
while (true){
select kmeansscript.computeCenters() as c_count;
if(c_count = 0){ break; }
}
$$ language 'hyperscript' strict;
create or replace function kmeansscript.computeCenters() returns integer not null as $$
table clusters_tmp(cid int, x float, y float, count int);
insert into clusters_tmp (select cid, avg(px), avg(py), count(*) from (
select cid, p.x as px, p.y as py, rank() OVER (partition by p.id
order by (p.x-c.x)*(p.x-c.x)+(p.y-c.y)*(p.y-c.y) asc, (c.x*c.x+c.y*c.y) asc)
from kmeansscript.points p, kmeansscript.clusters c) x where x.rank=1 group by cid);
select count(*) as c_count from (select * from kmeansscript.clusters except select * from
clusters_tmp);
truncate kmeansscript.clusters; -- losche alte Daten
insert into kmeansscript.clusters (select * from clusters_tmp);
return c_count; -- gebe Anzahl der gednderten Zentren zuriick
$$ language 'hyperscript' strict;

List. 9: Fixpunktiteration fiir k-Means: Die SQL-Funktion computeCenters() berechnet die
Clusterzentren — im Beispiel als avg(px), avg(py) — und nutzt die Fensterfunktion rank(), um
alle Datenpunkte dem jeweils nichstgelegenen Clusterzentrum zuzuordnen. Die Rahmenfunktion
run() ruft computeCenters() so oft auf, bis in einer Iteration kein Datenpunkt mehr einem anderen
Clusterzentrum zugeordnet wird.

create or replace function dbscanscript.run(eps float, minPoints int) as $$
select count(*) as maxiter from dbscanscript.points;
select index from sequence (1,maxiter){
select dbscanscript.insertCluster(index,eps,minPoints,maxiter) as cond;
if(cond=0){ break; }
}
$$ language 'hyperscript' strict;
create or replace function dbscanscript.insertCluster(clusterid int not null, eps float not null,
minPoints int not null, maxiter int not null) returns int not null as $$
table pointstmp (id int, x float, y float);
insert into pointsTmp(select * from dbscanscript.points except (select id,x,y from dbscanscript.
pointsclustered) LIMIT 1);
select count(*) as ret from dbscanscript.pointstmp;
select index from sequence(l,maxiter){
select count(*) as newc from pointsTmp c, dbscanscript.points p
where (p.x-c.x)A2+(p.y-c.y)*2<eps*2 and c.id<>p.id;
insert into pointsTmp(
select * from (select * from dbscanscript.points except select * from pointsTmp) c where exists
(select * from pointsTmp p where (p.x-c.x)A2+(p.y-c.y)*2<eps?*2 and c.id<>p.id)
H
if(newc=0){ break; }
ret=ret+newc;
}
if(ret < minPoints) { clusterid=NULL; }
insert into dbscanscript.pointsclustered(select *,clusterid, false from dbscanscript.pointstmp);
return ret;
$$ language 'hyperscript' strict;

List. 10: DBSCAN: Die Rahmenfunktion run() ruft insertCluster() auf: Pro Iteration ensteht ein
neuer Cluster mit der als ersten Parameter angegebenen ID. Die Funktion insertCluster () nimmt
pro Aufruf einen noch keinem Cluster zugewiesenen Punkt als neuen Cluster und erweitert diesen, bis
er sich nicht mehr verdndert. Die Funktion gibt die Anzahl der sich im Cluster befindlichen Punkte
zuriick. Die Anzahl der Iterationen ist limitiert durch die Anzahl aller Punkte.

118 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

der Operator parallel aufgerufen, das heiit die Datenpunkte liegen auf mehrere Threads
verteilt vor. Die initialen Clusterzentren werden dann zunéchst in jeden Thread repliziert,
anschlieend ordnet jeder Thread lokal seine Datenpunkte den néchstgelegenen Cluster-
zentren zu. Zur Ermittlung der neuen Clusterzentren miissen die Ergebnisse aller Threads
zusammengefiigt werden, jedoch werden die Ergebnisse bereits threadlokal aggregiert, um
die Menge der zu iibertragenen Daten sowie die Menge synchronisierter Berechnungen zu
minimieren. Die neuen Clusterzentren werden nun wieder in alle Threads repliziert und
die nichste Iteration beginnt, solange sich noch Clusterzuordnungen éndern. Der Operator
generiert LLVM-Code, sodass der Algorithmus nahtlos in SQL-Anfragen hineinkompiliert
werden kann und teure Funktionsaufrufe vermieden werden.

Der DBSCAN-Operator erhilt als Eingabe die Datenpunkte sowie die Parameter € und
minPts. Fiir jeden unbesuchten Datenpunkt wird gepriift, ob geniigend (minPts) andere
Datenpunkte in der e-Umgebung des Datenpunktes liegen, und welchem Cluster diese
zugeordnet sind. Je nach Ergebnis dieser Priifung wird der Datenpunkt einem Cluster
zugeordnet, als Noise deklariert oder ein neuer Cluster wird begriindet. Auch dieser
Operator generiert LLVM-Code, ist im Gegensatz zu k-Means in HyPer jedoch nicht parallel
implementiert.

4.3 Lineare Regression

Lineare Regression ist ein Optimierungsproblem um Labels vorherzusagen, dem ein lineares
Modell m(x) = w * x + wq auf Daten x mit Gewichten w zugrunde liegt. Lineare Regression
lasst sich als Optimierungsproblem mittels Gradientenabstiegsverfahren 16sen. Der in HyPer
implementierte Operator nutzt diesen Ansatz. Wir haben das Gradientenabstiegsverfahren
mit festem Gradienten bei linearer Regression ebenfalls in HyPerScript implementiert. Als
Alternative zu einem Optimierungsverfahren ist lineare Regression numerisch mit dem
Gleichungssystem w = (X7 X")~! X'T§ 16sbar. List. 11 zeigt den Aufruf der verschiedenen
Varianten.

-- nativer Operator:
select * from linearregression((select x_1, x_2, y from linregscript.sample));
HyPerScript:
select linregscript.run();
-- mit Matrixoperationen:
select (array_transpose(x)*x)A-1*(array_transpose(x)*y)
from (select array_agg(x) x from (select ARRAY[1,x_1,x_2] as x from linregscript.sample) sx) tx,
(select array_agg(y) y from (select ARRAY[y] y from linregscript.sample) sy) ty;

List. 11: Aufruf linearer Regression in HyPer: als Operator wie als gespeicherte Prozedur und komplett
mit Matrixoperationen.

List. 12 zeigt den Gradientenabstieg programmiert in HyPerScript. Dazu haben wir den
Gradienten hart kodiert, den wir in jeder Iteration fiir jedes Tupel berechnen. Als Besonderheit
dieser Implementierung hidngen die Riickgabewerte nur von den Eingabeparametern ab

Ja-(zu-)SQL 119

(sind immutable, bzw. stable bei Lesezugriff auf die Datenbasis). Das ist moglich, da eine
temporire Tabelle (table) als Funktionsparameter mit iibergeben werden kann (setof).

create or replace function linregscript.iterate(tuples float[] not null, y float not null, weights float
[] not null, learningrate float not null) returns float[] not null as $$
var gradient=array_access(weights,1);
select index as i from sequence(l,array_length(tuples,1)){
gradient = gradient + tuples[i]*weights[i+1];
3
gradient = gradient-y;
var ret=array_set(weights,array_access(weights,1)-learningrate*gradient*2,1);
select index as i from sequence(l,array_length(tuples,1)){
ret=array_set(ret,weights[i+1]-learningrate*gradient*2*tuples[i],i+1);
3
return ret;
$$ language 'hyperscript' strict immutable;

create type features as (a float, b float, c float);
create or replace function linregscript.gradientdescent(tuples setof features, learningrate float not
null, maxIter int not null) returns float[] not null as $$
var weights='{1,1,1}'::float[];
select index as i from sequence(l,maxIter){
select a,b,c from tuples{
weights=linregscript.iterate(ARRAY[a,b],c,weights,learningrate);
}
}
return weights;
$$ language 'hyperscript' strict stable;

create or replace function linregscript.run(learningrate float not null, maxIter int not null) returns
float[] not null as $$
table sample(a float, b float, c float);
insert into sample (select x_1,x_2,y from linregscript.sample);
var weights=linregscript.run(sample,learningrate,maxIter);
$$ language 'hyperscript' strict stable;

List. 12: Stochastischer Gradientenabstieg mit linearer Regression in HyPerScript: Eine Funktion
iterate() berechnet den Fehler pro Tupel mit den angegebenen Gewichten und gibt die optimierten
Gewichte zuriick. Eine Rahmenfunktion iteriert iiber alle Tupel, die die Lernrate und die Anzahl der
Iterationen als Argumente erwartet.

Der HyPer-Operator unterstiitzt Parallelitit, indem er wahlweise durch ein Flag parallelisiert
zuerst lokale Gewichte berechnet oder die optimalen Gewichte pro eingehendem Tupel
vorberechnet. Der Implementierung des Gradientenabstiegs in C++ gleicht der HyPerScript-
Prozedur.

4.4 PageRank

PageRank ist ein Algorithmus fiir gerichtete Graphen, der urspriinglich zur Bestimmung der
Wichtigkeit von Internetseiten gedient hat [BP98]. Eine Internetseite (Knoten) gilt dabei als
wichtig, wenn wichtige Internetseiten auf sie verweisen (gerichtete Kanten). In jeder Iteration
verteilt jeder Knoten einen Teil (1 — @) seines PageRank-Wertes gleichwertig iiber die
ausgehenden Kanten auf die ndchsten Knoten, und erhélt entsprechend die Werte der auf ihn

120 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

verweisenden Knoten. Die Summe der eingehenden Werte ist der neue PageRank-Wert des
Knotens. List. 13 zeigt den Aufruf von PageRank mittels Operators wie als Skript-Funktion,
jeweils ohne Dampfung.

-- nativer Operator:
select * from pagerank((table pagerankscript.edges),0);
HyPerScript:
select pagerankscript.run(®); select * from pagerankscript.pagerank;

List. 13: Aufruf von PageRank in HyPer: Sowohl der Operator als auch die HyPerScript-Formulierung
benotigen als Eingabe die Kanten sowie den Dampfungsfaktor & = 0.

Die Berechnung der neuen PageRank-Werte lédsst sich in SQL durch einen Join mit den
Vorgingerknoten sowie eine Summen-Aggregation abbilden. Zur einfachen Formulierung
der Iteration bendtigen wir die Schleifen aus HyPerScript (s. List. 14).

create or replace function pagerankscript.computePR(alpha float not null) returns int not null as $$
table pr_tmp(node int, edges int);
insert into pr_tmp (
select VTo, alpha*(cast((select count(*) from pagerankscript.pagerank) as float))
+(1-alpha)*sum(Beitrag)
from (select e.VTo, p.Pagerank/(select count (*) from pagerankscript.edges x where x.VFrom=e.VFrom)
as Beitrag from pagerankscript.edges e, pagerankscript.pagerank p where e.VFrom=p.Node) i
group by VTo);
select count(*) as c_count from (select * from pagerankscript.pagerank except select * from pr_tmp);
truncate pagerankscript.pagerank;
insert into pagerankscript.pagerank (select * from pr_tmp);
return c_count; -- gebe Anzahl der gednderten Werte zuriick
$$ language 'hyperscript' strict;

create or replace function pagerankscript.run(alpha float not null, maxIterations int not null) as $$
select index as i from sequence(®,maxIterations) {
select pagerankscript.computePR(alpha) as c_count;
if(c_count = 0){ break; }
}

$$ language 'hyperscript' strict;

List. 14: Approximation fiir PageRank: Die Rahmenfunktion run() ruft die Berechnung der PageRank-
Werte computePR() solange auf, bis die Werte stabil sind. Die SQL-Funktion computePR() berechnet
die PageRank-Werte aller Knoten mittels Aggregation. Dabei behilt jeder Knoten den Anteil o
seines alten PageRank-Wertes, und verteilt den Rest auf die durch ausgehende Kanten direkt mit ihm
verbundenen Knoten.

Auch PageRank liegt als in HyPer implementierter Operator vor [Th15]. Die Besonderheit
dieses Operators ist die Erzeugung eines temporiren Indexes, der schnellen Zugriff auf
die Vorgingerknoten erlaubt. Wihrend der Ausfiihrung des Algorithmus muss dann nicht
mehr auf die Eingabedaten zugegriffen werden, sondern lediglich der Index verwendet
und die PageRank-Werte aktualisiert werden. Dies kann von mehreren Threads parallel
durchgefiihrt werden. Lediglich ein Synchronisationspunkt am Ende jeder Iteration ist notig,
um den Threads zu signalisieren, dass von nun an die neuen PageRank-Werte genutzt werden.
Im folgenden Kapitel werden die Laufzeiten der Operatoren mit denen der vorgestellten
HyPerScript-Implementierungen verglichen.

Ja-(zu-)SQL 121

5 Evaluation

Die Evaluation vergleicht die Leistungsfihigkeit von mit HyPerScript erstellten Prozeduren
und von Operatoren im Datenbankkern. Alle Experimente wurden auf einem Rechner mit
Intel Xeon E5-2660 v2 CPU Prozessor (20 Kerne mit jeweils 2,20 GHz) und 256 GB DDR4
RAM gemessen, als Betriebssystem diente Ubuntu 17.04. Fiir den Apriori-Algorithmus
wurden 100 verschiedenen Waren in 1000 Warenkorben synthetisch hergestellt. Die Anzahl
der Elemente pro Warenkorb variierte gleichverteilt im Intervall [0, 10]. Fiir Clustering
erzeugten wir 10® Punkte, deren x- wie y-Koordinaten gleichverteilt im Intervall [0, 10°]
lagen. PageRank arbeitete auf 10° Knoten mit genauso vielen Kanten, fiir lineare Regres-

sionen erzeugten wir 10° Tupel. Alle Experimente wurden dreimal wiederholt und fiir die
Messungen der Median verwendet.

—— UDF
—— Operator

200 |- \

100 \‘

Zeit in Sekunden

T L
0.10.20.30.40.50.60.70.80.9 1

S0

Abb. 1: Laufzeit fiir Assoziationsanalyse mit Apriori bei konstant 20 Rechenkernen: Abhingigkeit

vom minimalen Support sg als Parameter von Apriori. Je groBer s, desto strenger die Auswahl
assoziierter Produkte, da weniger Kandidaten.

Fiir den Apriori-Algorithmus verdnderten wir den minimalen Support (je groBer, desto
weniger hidufige Item-Mengen existieren, s. Abb. 1). Mit wachsendem minimalen Support
gleichen sich die Laufzeiten an, da die Zahl hiufiger Item-Mengen abnimmt.

Die Laufzeiten der Clustering-Algorithmen wachsen linear mit der Eingabegrofe
(s. Abb. 2a, 3). Der k-Means-Algorithmus berechnet um 30 % schneller mit Hinzunahme
eines weiteren Kernes (s. Abb. 2b). Die Parallelitiit des darunterliegenden Datenbanksystems
gewihrleistet die implizite parallele Ausfithrung des als Prozedur implementierten k-Means-
Algorithmus; der k-Means-Operator ist explizit parallelisiert angelegt. Weder DBSCAN als
Operator, noch als gespeicherte Prozedur unterstiitzen Skalierung. Wihrend der Operator
keine parallele Berechnung unterstiitzt, skalieren die verwendeten SQL-Anfragen in der

HyPerScript-Prozedur schlecht, da pro (nicht parallelisierter) Iteration nur ein Tupel als
neuer Cluster initialisiert wird.

122 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

; UDF [T} UDFl il Operalor ‘
10°F T —— Operator s0[7643
10" E
= E E
S r 7 -
% 100 E E - 60 52.63
] f , S
S ik / d £
= 10 E / E 3 4148
2 F Y S g 40 35.83
Z 1072 — / = £
é F / 3 'g
£ 1073k - 5 20p
% F / .
3 E 3
4L J
107 o .5
1075 L IR R RTTT R WRTHT R RTIT M RUTIT AWETIT) —: -
100 10" 102 103 10* 105 10° 1 2 4 g
Anzahl Punkte Anzahl Rechenkerne
(a) k-Means: EingabegroBe. (b) k-Means: Skalierung.

Abb. 2: Laufzeit fiir Clustering-Algorithmus k-Means mit fiinf Zentren: (a) Laufzeit in Abhingigkeit
von der Eingabegrofe bei konstant 20 Rechenkernen sowie (b) in Abhéngigkeit von der zur Verfiigung
stehenden Rechenkerne.

—— UDF
w02 F T Operator ["]

Zeit in Sekunden (log. Skala)

100 100 102 100 10t
Anzahl Punkte
Abb. 3: Laufzeit fiir Clustering-Algorithmus DBSCAN mit € = 20 und minPts = 2: Laufzeit in
Abhingigkeit von der Eingabegrofe bei konstant 20 Rechenkernen.

Lineare Regression mit Gradientenabstieg in HyPerScript ist fiir bis etwa 100 Tupel schneller
als der implementierte Operator (s. Abb. 4a). Beide Versionen sind gleich stukturiert,
beide materialisieren zuerst die Tupel lokal und berechnen anschlieBend die optimalen
Gewichte mit festem Gradienten. Allerdings kompiliert HyPerScript beide Schritte zu
LLVM-Code basierend auf den Datenbanktypen, wihrend der Operator C++-Funktionen auf
den Basistypen aufruft. Bei wenigen Tupeln iiberwiegt der Aufwand durch Funktionsaufrufe,
bei vielen Tupeln der Aufwand durch die Nutzung komplexer Datentypen.

Die Laufzeit des in HyPerScript implementierten PageRank-Algorithmus ist bei wenigen

Ja-(zu-)SQL 123

—— UDF —— UDF
AL e— T T

——— Operator 3 ol b —— Operator | ' i
;j 100 3) i / 1
g S 0 4
2 Z 0 / 1
& 0} - 2 i /]
=3 = /
b5 5 107 | / 3
2 Q E /
S - /
Z 10 2 b / /
2} %2} -2 L -
£ = 107 /
= 3| | = r /
g 0 3 r / o

1073 E JA 3
1074 Ll il ol = t IR R BT A RETT T R
100 100 102 100 10* 10° 100 100 102 10 10* 10°
GroBe der Trainigsdaten Anzahl Kanten
(a) Lineare Regression (b) PageRank.

Abb. 4: Laufzeit bei jeweils konstant 20 Rechenkernen von (a) linearer Regression bei einer Lernrate
von 0,85 und 45 Iterationen in Abhingigkeit der Grofe zu trainierender Daten, sowie (b) zur
Berechnung des PageRank-Wertes bei Verdnderung der Anzahl der Kanten.

Tupeln vergleichbar mit der des PageRank-Operators (s. Abb. 4b). Bei wenigen Kanten ist
die Stored-Procedure-Version des PageRank-Algorithmus sogar schneller als der optimierte
Operator von HyPer, verliert allerdings mit zunehmender Anzahl an Kanten. Bei wenigen
Kanten zeigt sich die Mehraufwand des integrierten Operators, da dieser ein Worterbuch
fiir die Knoten anlegt und Kanten in einer diinnbesetzte Matrix als Compressed-Sparse-
Row (CSR) speichert. Mit zunehmender Kantenanzahl amortisieren sich der Mehraufwand
fiir das Worterbuch und die CSR-Datenstruktur, sodass der Operator schneller als die
Skriptfunktion den PageRank-Wert berechnet.

Zusammenfassend zeigt die Evaluation, dass HyPerScript es ermoglicht, Prototypen zu
entwickeln, ohne die relationale Algebra des Datenbanksystems zu erweitern. Die Laufzeiten
der Prozeduren sind bei wenigen Tupeln vergleichbar zu derer der Operatoren der relationalen
Algebra, erlauben allerdings nur Parallelitit, wenn die zugrundeliegenden SQL-Anfragen
entsprechend skalieren, wie es bei k-Means-Clustering zu sehen ist.

6 Zusammenfassung und Fazit

Skriptsprachen erlauben betriebswirtschaftlich transaktionale Anwendungen im Kern von
Datenbanksystemen auszufiihren. Typische Anwendungsfille von SQL-Skriptsprachen sind
die Implementierung von Datenbanktriggern und die serverseitige Ausfithrung von Teilen
einer Applikation. Letzteres wird beispielsweise bei der Ausfiihrung von Benchmarks
bendtigt, weshalb die grofle Mehrheit der Datenbanksysteme iiber solche prozeduralen SQL-
Erweiterungen verfiigt. Auch in HyPer, dem dieser Arbeit zugrundeliegenden Hauptspeicher-

124 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

datenbanksystem, wurde das prozedurale HyPerScript zunéchst fiir die Leistungsbewertung
verwendet.

Ziel der vorliegenden Arbeit war, das Potenzial von SQL-Skriptsprachen fiir andere Anwen-
dungsfille, insbesondere fiir Algorithmen zur Datenanalyse, auszuloten. Am Beispiel von
HyPerScript zeigten wir, dass nutzerseitig definierte Funktionen in Kombination mit prozedu-
ralen Ausdriicken eine kompakte Schreibweise von Algorithmen zur Datenanalyse erlauben.
So zeigten wir anhand einer Beispielimplementierung, dass eine TPC-C-Implementierung
in HyPerScript nur einen Bruchteil an Codezeilen einer Implementierung in einer rein
prozeduralen Sprache benotigt. Neben Schleifen und Konditionen halfen Tensoroperationen,
welche wir im Rahmen dieser Arbeit in HyPer integrierten, bei der numerischen Berechnung
linearer Regression wie bei der Assoziationsanalyse.

Durch die Ausfiihrung von Datenanalysealgorithmen im Datenbanksystem statt auf einer
separaten Datenanalyseplattform werden teure ETL-Prozesse eingespart. Unsere Evaluation
zeigt, dass die in HyPerScript formulierten Algorithmen nicht mit der Schnelligkeit
hartkodierter Datenbankoperatoren mithalten konnen. Durch die kompakte Formulierung
und die hohe Flexibilitdt im Vergleich zu hartkodierten Operatoren ist HyPerScript jedoch
dennoch sinnvoll einsetzbar, um neue Algorithmen auf Datensitzen zu studieren ohne
den Datenbankkern zu verdndern. Zwar ist eine korrekte Ausfithrung der Algorithmen
sichergestellt, deren Leistungsfahigkeit als Prozedur ist jedoch nachrangig. Eine SQL-nahe
Skriptsprache wie HyPerScript spricht in erster Linie Nutzer aus dem Datenbankbereich
an. Insofern ist HyPerScript erst als Beginn der Entwicklung einer universellen Sprache zu
sehen, die Datenwissenschaftler direkt auf Datenbanksystemen nutzen konnen, um Daten
aufzubereiten und zu analysieren.

Danksagung

Diese Arbeit istim Rahmen des Projekts TUM Living Lab Connected Mobility (TUM LLCM)
entstanden, das vom Bayerischen Staatsministerium fiir Wirtschaft, Energie und Technologie
(StMWi) durch das Zentrum Digitalisierung.Bayern, einer Initiative der Bayerischen
Staatsregierung, finanziert wird. Das diesem Bericht zugrundeliegende Vorhaben wurde mit
Mitteln des Bundesministeriums fiir Bildung und Forschung unter dem Forderkennzeichen
TUM: 011S17049 gefordert, sowie vom Européischen Forschungsrat (ERC) im Rahmen
des Forschungs- und Innovationsprogramms der Europdischen Union (Horizont 2020)
(Finanzhilfevereinbarung Nr. 725286). B = Die Verantwortung fiir den Inhalt dieser
Veroffentlichung liegt bei den Autoren.

Literatur

[Ab16] Abadi, M. et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-
tributed Systems. CoRR abs/1603.04467/, 2016, arXiv: 1603 . 04467, URL: http:
//arxiv.org/abs/1603.04467.

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467

Ja-(zu-)SQL 125

[Ab17]

[AIS93]

[BG16]

[BG17]

[Bil2]

[BMM13]

[BP98]

[Cr15]

[Ei04]

[Gil3]

[GSU13]

[GU13]

[Hul7]

[KN11]

[Lel5]

Aberger, C.R.; Lamb, A.; Olukotun, K.; Ré, C.: Mind the Gap: Bridging Multi-Domain
Query Workloads with EmptyHeaded. PVLDB 10/12, S. 1849-1852, 2017, URL:
http://www.vldb.org/pvldb/vol10/p1849-aberger.pdf.

Agrawal, R.; Imielinski, T.; Swami, A. N.: Mining Association Rules between Sets of
Items in Large Databases. In: ACM SIGMOD, Washington, DC, USA, May 26-28, 1993.
S. 207-216, 1993, UrRL: http://doi.acm.org/10.1145/170035.170072.

Butterstein, D.; Grust, T.: Precision Performance Surgery for PostgreSQL: LLVM-
based Expression Compilation, Just in Time. PVLDB 9/13, S. 1517-1520, 2016, UrL:
http://www.vldb.org/pvldb/vol9/pl517-butterstein.pdf.

Butterstein, D.; Grust, T.: Invest Once, Save a Million Times - LLVM-based Expression
Compilation in PostgreSQL. In: BTW (DBIS), 6.-10. Mirz 2017, Stuttgart, Germany,
Proceedings. S. 623-624, 2017, urL: https://dl.gi.de/20.500.12116/672.

Binnig, C.; Rehrmann, R.; Faerber, F.; Riewe, R.: FunSQL: it is time to make SQL
functional. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany,
March 30, 2012. S. 41-46, 2012, urL: https://doi.org/10.1145/2320765.2320786.

Binnig, C.; May, N.; Mindnich, T.: SQLScript: Efficiently Analyzing Big Enterprise Data
in SAP HANA. In: BTW (DBIS), 11.-15.3.2013 in Magdeburg, Germany. Proceedings.
S. 363-382, 2013, urRL: https://dl.gi.de/20.500.12116/17332.

Brin, S.; Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks 30/1-7, S. 107-117, 1998, urL: https://doi.org/10.1016/S0169-
7552(98)00110-X.

Crotty, A.; Galakatos, A.; Dursun, K.; Kraska, T.; Binnig, C.; Cetintemel, U.; Zdonik, S.:
An Architecture for Compiling UDF-centric Workflows. PVLDB 8/12, S. 1466-1477,
2015, urL: http://www.vldb.org/pvldb/vol8/p1466-crotty.pdf.

Eisenberg, A.; Melton, J.; Kulkarni, K.; Michels, J.-E.; Zemke, F.: SQL:2003 Has Been
Published. SIGMOD Conference 2004 33/1, S. 119-126, Marz 2004, 1ssn: 0163-5808,
URL: http://doi.acm.org/10.1145/974121.974142.

Giorgidze, G.; Grust, T.; Ulrich, A.; Weijers, J.: Algebraic data types for language-
integrated queries. In: DDFP 2013, Rome, Italy, January 22, 2013. S. 5-10, 2013, urL:
https://doi.org/10.1145/2429376.2429379.

Grust, T.; Schweinsberg, N.; Ulrich, A.: Functions Are Data Too (Defunctionalization
for PL/SQL). PVLDB 6/12, S. 1214-1217, 2013, URrL: http://www.vldb.org/pvldb/
vol6/pl214-grust.pdf.

Grust, T.; Ulrich, A.: First-Class Functions for First-Order Database Engines. In:
(DBPL 2013), August 30, 2013, Riva del Garda, Trento, Italy. 2013, UrL: http:
//arxiv.org/abs/1308.0158.

Hubig, N.; Passing, L.; Schiile, M. E.; Vorona, D.; Kemper, A.; Neumann, T.: HyPerIn-
sight: Data Exploration Deep Inside HyPer. In: CIKM 2017, Singapore, November 06 -
10, 2017. S. 2467-2470, 2017, UrL: https://doi.org/10.1145/3132847.3133167.
Kemper, A.; Neumann, T.: HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: ICDE 2011, April 11-16, 2011, Hannover,
Germany. S. 195-206, 2011, urL: https://doi.org/10.1109/ICDE.2011.5767867.

Leis, V.; Kundhikanjana, K.; Kemper, A.; Neumann, T.: Efficient Processing of Window
Functions in Analytical SQL Queries. PVLDB 8/10, S. 1058-1069, 2015, uRL: http:
//wuww.vldb.org/pvldb/vol8/pl058-1leis.pdf.

http://www.vldb.org/pvldb/vol10/p1849-aberger.pdf
http://doi.acm.org/10.1145/170035.170072
http://www.vldb.org/pvldb/vol9/p1517-butterstein.pdf
https://dl.gi.de/20.500.12116/672
https://doi.org/10.1145/2320765.2320786
https://dl.gi.de/20.500.12116/17332
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
http://www.vldb.org/pvldb/vol8/p1466-crotty.pdf
http://doi.acm.org/10.1145/974121.974142
https://doi.org/10.1145/2429376.2429379
http://www.vldb.org/pvldb/vol6/p1214-grust.pdf
http://www.vldb.org/pvldb/vol6/p1214-grust.pdf
http://arxiv.org/abs/1308.0158
http://arxiv.org/abs/1308.0158
https://doi.org/10.1145/3132847.3133167
https://doi.org/10.1109/ICDE.2011.5767867
http://www.vldb.org/pvldb/vol8/p1058-leis.pdf
http://www.vldb.org/pvldb/vol8/p1058-leis.pdf

126 Maximilian Schiile, Linnea Passing, Alfons Kemper, Thomas Neumann

[LIS2]

[Lo08]
[Nell]

[Pal7]

[Sc10]

[Sc17]

[Th15]

Lloyd, S. P.: Least squares quantization in PCM. IEEE Trans. Information Theory 28/2,
S. 129-136, 1982, urL: https://doi.org/10.1109/TIT.1982.1056489.

Loney, K.: Oracle Database 11g The Complete Reference. McGraw-Hill, Inc., 2008.

Neumann, T.: Efficiently Compiling Efficient Query Plans for Modern Hardware. PVLDB
4/9, S. 539-550, 2011, urL: http://www.vldb.org/pvldb/vol4/p539-neumann.pdf.

Passing, L.; Then, M.; Hubig, N.; Lang, H.; Schreier, M.; Giinnemann, S.; Kemper, A.;
Neumann, T.: SQL- and Operator-centric Data Analytics in Relational Main-Memory
Databases. In: EDBT 2017, Venice, Italy, March 21-24, 2017. S. 84-95, 2017.

Schreiber, T.; Bonetti, S.; Grust, T.; Mayr, M.; Rittinger, J.: Thirteen New Players in the
Team: A Ferry-based LINQ to SQL Provider. PVLDB 3/2, S. 1549-1552, 2010, urL:
http://www.comp.nus.edu.sg/%5C%7Ev1db2010/proceedings/files/papers/D09.
pdf.

Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.; Xu, X.: DBSCAN Revisited, Revisited:
Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 42/3, 2017,
URL: http://doi.acm.org/10.1145/3068335.

Then, M.; Passing, L.; Hubig, N.; Glinnemann, S.; Kemper, A.; Neumann, T.: Effiziente
Integration von Data- und Graph-Mining-Algorithmen in relationale Datenbanksysteme.
In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier,
Germany, October 7-9, 2015. S. 45-49, 2015.

https://doi.org/10.1109/TIT.1982.1056489
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://www.comp.nus.edu.sg/%5C%7Evldb2010/proceedings/files/papers/D09.pdf
http://www.comp.nus.edu.sg/%5C%7Evldb2010/proceedings/files/papers/D09.pdf
http://doi.acm.org/10.1145/3068335

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 127

On-the-fly Reconfiguration of Query Plans for Stateful
Stream Processing Engines

Adrian Bartnik! Bonaventura Del Monte? Tilmann Rabl® Volker Markl*

Abstract: Stream Processing Engines (SPEs) must tolerate the dynamic nature of unbounded data
streams and provide means to quickly adapt to fluctuations in the data rate. Many major SPEs
however provide very little functionality to adjust the execution of a potentially infinite streaming
query at runtime. Each modification requires a complete query restart, which involves an expensive
redistribution of the state of a query and may require external systems in order to guarantee correct
processing semantics. This results in significant downtime, which increase the operational cost of
those SPEs. We present a modification protocol that enables modifying specific operators as well
as the data flow of a running query while ensuring exactly-once processing semantics. We provide
an implementation for Apache Flink, which enables stateful operator migration across machines,
the introduction of new operators into a running query, and changes to a specific operator based on
external triggers. Our results on two benchmarks show that migrating operators for queries with small
state is as fast as using the savepoint mechanism of Flink. Migrating operators in the presence of
large state even outperforms the savepoint mechanism by a factor of more than 2.3. Introducing and
replacing operators at runtime is performed in less than 10s. Our modification protocol demonstrates
the general feasibility of runtime modifications and opens the door for many other modification use
cases, such as online algorithm tweaking and up- or downscaling operator instances.

Keywords: Data Stream Processing, Resource Elasticity, Query Plan Maintenance, Fault Tolerance

1 Introduction

Stream processing engines (SPEs) have become an essential component of many business
use cases and need to reliably ensure correct processing of the incoming, high-speed
workload. However, the characteristics of a streaming workload may vary over time, since
it includes foreseeable and predictable changes within a time frame (e.g., the day and
night usage patterns for social media posts) but also bursty spikes in the case of irregular
events such as sport or weather events. The ability of an SPE to adapt to workload changes
at runtime is one aspect of elasticity. Currently, many SPEs (e.g., Apache Flink [Cal7],
Apache Storm [Tol4], and Apache Spark [Zal3]) provide limited functionality to support
changes in their running configuration, if any at all. These systems allow modifications of a
running streaming query only by restarting its execution with a new configuration. However,

! Technische Universitit Berlin, bartnik @ campus.tu-berlin.de

2 DFKI GmbH, bonaventura.delmonte @dfki.de

3 Technische Universitit Berlin - DFKI GmbH, rabl @tu-berlin.de, tilmann.rabl @dfki.de

4 Technische Universitit Berlin - DFKI GmbH, volker.markl @tu-berlin.de, volker.markl @dfki.de

@®® doi:10.18420/btw2019-09

https://creativecommons.org/licenses/by-nc/3.0/
bartnik@campus.tu-berlin.de
bonaventura.delmonte@dfki.de
rabl@tu-berlin.de
tilmann.rabl@dfki.de
volker.markl@tu-berlin.de
volker.markl@dfki.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-09

128 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

this may violate SLAs when other, critical systems rely on the output of the SPEs and cannot
tolerate any downtime. As a result, end-users of those SPEs face potentially ever-running
streaming queries that they cannot alter at runtime. Motivated by this technical challenge,
our goal is to enable modifications of a running query at runtime, without stopping the SPE.
We analyze diverse modifications and we derive a set of generic protocols that alter the
physical plan of a running query. Our protocols enable introducing, tuning, and removing
operators in a running query. This opens the door for a new class of online optimizations.
Through our protocols, the SPE can tune the behavior of an operator, e.g., increasing its
number of network buffers to sustain higher incoming load. Our protocols also enables
the SPEs to migrate operators among different nodes, e.g., when a node is scheduled for
maintenance. This is particularly challenging for jobs with large state, which have long
recovery times. Finally, our protocols potentially allow in- or decreasing the degree of
parallelism of an operator, which is beneficial for the system to adapt to changes of the
incoming workload. Our contribution are as follows:

e Migration of stateless and stateful stream operators at runtime

e Introduction of new operators into a running streaming query

o Changing user defined functions of operators in running query

e Implementation of our protocols in Apache Flink

o Evaluation of our solution on Nexmark and a custom benchmark

This paper is structured as follows: we first provide background concepts in Section 2
and then we describe the design of our protocols in Section 3. After that, we present the
architecture of an SPE integrating our protocols in Section 4 and its new features in Section
5. In Section 6, we show the experimental evaluation of our system. In Section 7, we
conclude by summarizing our contributions and providing insight about future works that
our current work enables.

2 Background

In the following, we present the background concepts that lay the foundation to our work. In
particular, we provide an overview of data stream processing and a description of Apache
Flink with its checkpoint mechanism, which we use as building block for our techniques.

2.1 Data Stream Processing

Data stream processing enables continuous analysis of real-time, unbounded data. Although
SPEs are part of the data processing stack for more than a decade [ScZ05], only recently
the need for real-time big data processing has fostered the development of a new generation
of SPEs. Those new SPEs target massively parallel cloud infrastructures by extending the
batch-oriented MapReduce paradigm [DG04]. The new engines improve on MapReduce as
they consider low latency an important constraint. New SPEs adopt one of two processing
models: micro-batching and tuple-at-a-time processing.

The micro-batching model discretizes the processing of an unbounded stream in a series of

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 129

finite chunks of data. While this approach ensures higher throughput, the size of each chunk
drastically impacts the latency of running queries [Zal3, Kul5]. The tuple-at-a-time model
allows for a more fine-grained processing of incoming records, thus achieving lower latency.
This model still uses a batching mechanism at the physical level to ensure high throughput,
i.e., operators pack tuples into buffers [Cal7].

Regardless of the processing model, a natural way of modeling data flows in SPEs is by
means of a Directed Acyclic Graph (DAG), which contains source, processing, and sink
nodes. Source nodes continuously emit a stream of data elements, which are also commonly
referred to as tuples or records. A stream is a potentially unbounded sequence of tuples
generated continuously over time. Processing nodes consume, process, and emit new data
elements. A Sink consumes but does not forward any new elements, e.g., it writes its output
to disk. Source, processing, and sink nodes are connected through edges, which represent
the communication channels for the data exchange among operators.

Processing nodes are either stateful or state-less. For state-less nodes, the output only
depends on each incoming data element. In contrast, the output for stateful nodes depends
on the incoming data elements as well as on some internally managed state.

2.2 Apache Flink

Apache Flink is an open-source dataflow processing framework for batch and stream data
[Al14]. Flink uses the parallelization contract (PACT) programming model, a generalization
of the MapReduce programming model, and second order functions to perform concurrent
computations on distributed collections in parallel [Hii15]. Flink compiles submitted queries
into DAGs that it optimizes and executes on a cluster of nodes. Flink relies on pipelining
and buffering to avoid the materialization of intermediate results. Stream operators in Flink
exchange intermediate results via buffers, i.e., an operator sends its buffer downstream
when it is full or after a timeout. This enables processing data with high throughput and
low latency. Furthermore, Flink provides operator fusion [Hil4]. This ensures that fused
operators exchange tuples in a push-based fashion, whereas not-fused operators exchange
buffers in a pull-based fashion. Back-pressure occurs in Flink when an operator receives
more data than it can actually handle. Back-pressure is usually due to a temporary spike in
the incoming workload, garbage collection stalls, or network latency.

2.3 Fault Tolerance and Checkpointing in Apache Flink

Flink’s Checkpointing Mechanism consistently stores and recovers the state of a streaming
query [Cal7]. The mechanism ensures fault tolerance in the presence of failures, meaning
upon recovery, the program’s state eventually reflects the stream state from before the
failure. The checkpointing settings enable specifying message delivery guarantees, which
ensure that every record from the data stream is processed exactly-once, at-least-once, or
at-most-once. This mechanism lays the foundation for the Savepoint Mechanism, which
enables deliberately stopping and resuming a running query. When restarting from a
savepoint, Flink allows for updating aspects of the query itself, e.g., adding or removing

130 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

operators as well as adjusting their degree of parallelism. The checkpointing mechanism
periodically triggers checkpoints of the streaming query, which act as independent snapshots
to which the system can fall back in case of a failure. For queries with small states, the
checkpoints have only negligible impact on the overall system performance. For queries with
large state, checkpointing may drastically affect the query performance, mainly because of
the time needed to copy the state on a persistent storage. In case of a program failure, Flink
stops and restarts the streaming query by resetting the operator state to the one captured in
the last successful checkpoint. The checkpointing mechanism requires a persistent stream
source (e.g., Apache Kafka) that allows for rewinding the stream to a specific point in time
and resend all subsequent messages for strict processing semantics. Non-replayable stream
sources instead loose intermediate records upon query restart.

3 Protocol Description

This section describes the main features of the migration protocol that enables runtime
modifications on a running streaming query. These are migrating stateful operator instances
across nodes, introducing new operators into a running query, and replacing user-defined
functions (UDFs) of operators.

3.1 System Model

Before we discuss the design of the migration protocols, we provide a description of our
system model. We assume that our SPE ingests an infinite set of tuples ry, 1, - - -. A tuple
rj = (A, 1) consists of a set of attributes A and a timestamp ¢. Each operator in our system
processes a tuple at a time through a UDF f(r;, S), where r; is the input tuple and S is
the current state of the operator. According to the semantic of its UDF, the operator emits
zero or more output tuples upon processing an input tuple. Each operator runs with its own
degree of parallelism. A logical query plan consists of a set of source, sink, and processing
operators, which the SPE models as nodes of a DAG. A physical query plan contains all the
parallel instances of all the operator. The SPE also represents this as a DAG. We refer to
a job as a running physical plan in the SPE. The edges of a DAG act as communication
channels between those machines and represent the data exchange among operators, which
follows three patterns. A parallel instance of an operator can 1. forward a record to a single
parallel instance of a downstream operator, 2. broadcast a record to all parallel instances of a
downstream operator, and 3. send a record downstream based on some partitioning function.
To support checkpointing, the SPE injects special markers m; through the sources into the
DAG, periodically or upon user request. Marker m; triggers the i-th checkpoint for a job.
Each parallel instance of an operator receives a marker on all its inbound communication
channels and reacts by snapshotting its state and forwarding the marker downstream. As
soon as all parallel instances successfully complete their snapshot, they asynchronously
send the checkpointed state to persistent storage (e.g., a distributed file system). As soon as
those asynchronous copies finish, the SPE marks the checkpoint as completed. Checkpoint
markers logically divide the processing of an input stream in finite sets of tuples. The

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 131

SPEs guarantees exactly-once processing of each tuple in every set. The SPEs consists of a
coordinator process and several workers processes, which run on a cluster of nodes. Each
worker process has a set of execution slots that determines the number of parallel instances
of an operator it can run. In the rest of this section, we provide a thorough description of
our proposed protocols based on the system model presented above.

3.2 Migration Protocol Description

This first protocol enables the migration of operator instances across machines, e.g., when
detecting an upcoming hardware failure on a node in the cluster. Upon a migration request,
the SPE retrieves all operator instances on the faulty node and allocates resources for these
instances on others nodes. The SPE starts a migration by creating a special modification
marker that contains all necessary information to perform the migration and ingests it
into the DAG at the source operators (following the ideas of Del Monte [DM17]). Each
operator instance eventually receives these markers and decides whether it needs to react
on that migration marker. The key concept here is that a migration does not only affect
the actual migrating instances but also the up- and down-stream instances. The upstream
instances temporarily buffer their records during the migration duration as well as guarantee
processing semantics and maintain FIFO order. The migrating instances store their state
in persistent storage in order to consistently resume processing tuples once restarted on a
different worker. The downstream instances rewire their inbound communication channels
to correctly consume records from the migrated instances.

3.3 Modification Protocols Description

In addition to migrating operator instances, our protocol also enables the modifications
of the data flow, e.g., the introduction of new operator instances or replacing the operator
function in a running job. Both operations require the distribution of the UDFs in the cluster
at runtime. The SPE starts each modification similarly to a migration by ingesting the
modification marker at the source operators.

3.3.1 Introduction of New Operators

Upon receiving the modification marker, each operator checks how it needs to react. The
upstream operators have to start buffering their outgoing records. Then, they broadcast
the upcoming location of the newly introduced operator to all downstream operators. As
soon as all upstream operators have successfully acknowledged buffering, all new operator
instances will be started. Before the actual modification starts, the SPE distributes the UDFs
compiled code to the target nodes such that the operators can immediately start instantiating
those UDFs and processing records. The downstream operators instead attempt to connect
to the machine of the newly instantiated operator instances or fail otherwise.

132 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

3.3.2 Changing the Operator Function

The last modification operation enables replacing the UDF of an operator at runtime. Similar
to introducing an operator, the user first needs to provide the SPEs with the new UDFs
compiled code for the operator to update The SPEs distributes the compiled code to all
nodes on which the target operator runs. The SPE then introduces a special modification
marker at the DAG sources that sets up all operator instances for the modification. Upon
receiving the checkpoint marker for that modification, each instance of the target operator
instantiates the new UDF and continues processing records.

4 System Architecture

This section deals with our system architec-

= ture that support the migration and modifica-
uel

Coordinator tion protocol from the previous section. We

' : v Types) A
Client Gheckpoint |“gg§;‘;?§;;‘;':| — widgrectonall explain the components that drive and su-

<> pidirectional

RPC . . . :
ey Subrmission, Job Manager pervise the modifications as well as the inte-
e gration with the checkpointing mechanism
Query Deployme: . .
Checkporm Toggerng of Apache Flink (Version 1.3.2). We first
Migration Triggering
provide an overview of the existing compo-
OO, nents and then we illustrate our changes on
the coordinator and worker sides.
[TCP Data
Data Exchange Dara Exchange 4.1 Vanilla Components Overview
Task Manager Task Manager .
Upload/Retrieve The client sends modification control mes-

e —— sages to the coordinator (i.e., the Job Man-
f Distributed Persistent Storage i ager), which interacts with the Flink cluster.
It delegates and distributes the actions be-
Fig. 1: System Architecture. Our contributions are tween all workers (i.e., the Task Manager),
marked in bold. that run the actual operator instances. These
control messages are not part of the actual
data flow and are realized as Remote Procedure Call (RPC) via the actor model [HBS73].
The actor model represents a system, in which all entities, namely actors, run concurrently
and solely communicate via message passing. The client, the Job and Task Managers use
the actor system to concurrently communicate via asynchronous messages. Apache Flink
handles the data exchange among parallel instances of two operators in a produce-consumer
relation through an internal protocol built on top of TCP. All operator instances on a Task
Manager share some of their resources, such as TCP connections via multiplexing as well
as common data sets and data structures. Each instance is responsible for establishing a
connection to its upstream instances in order to retrieve the input tuples. Flink leverages
either the Job Manager or a third-party storage system to persistently store the checkpoint
data. In Figure 1, we present a conceptual view of the resulting system architecture.

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 133

4.2 Our Changes on the Coordinator Side

Besides controlling the health of every Task Manager and monitoring queries execution,
the Job Manager is responsible for the checkpoint mechanism. The existing Checkpoint
Coordinator handles all functionality related to the checkpointing mechanism, i.e., it triggers
checkpoints, supervises the lifecycle of a checkpoint, and may restart jobs based on past
savepoints. Similarly, our newly introduced Modification Coordinator handles processing
and validating modification commands as well as triggering and supervising the execution
of these modifications. The validation includes whether the requested modification is
applicable to the current, running job and some modification-specific checks. If successful,
the Modification Coordinator prepares a modification-specific trigger messages, which
it introduces in the data flow at source vertices of the target job. The coordinator keeps
track of all vertices contained in the DAG and their modification life-cycle. Should an error
occur during a modification, the coordinator aborts the current modification and notifies
involved operators about its cancellation. Each operator may react to a certain trigger
message or choose to ignore it, yet in any case it will acknowledge the reception to the
Modification Coordinator. Depending on whether all vertices successfully acknowledge
the trigger message as well as all subsequent, modification-specific state changes, the
coordinator eventually marks a modification as completed or as failed. Normally, a task
starts in the Created-state, gets Scheduled and Deployed by the Job Manager, processes all
its input in the Running and eventually finishes by entering the Finished state. A task may
fail for various reasons and subsequently enters the Failed state. Finally, if the SPE cancels
a task due to an external reason, it enters the Canceling and Canceled state consecutively.
We introduce two additional states, i.e., Pausing and Paused, which the task enters when the
SPEs triggers a migration. In case of stateful operators, the tasks checkpoint and submit
their state to a distributed persistent storage system.

4.3 Our Changes on the Worker Side

Each Task Manger executes fasks, which provide the environment for running the concrete
operator instances. A task is mainly responsible for establishing the connection between
Task Managers according to the up- and downstream operators, deserializing incoming
records, processing them, serializing output records, and placing them in outgoing queues.
The Job Manager determines the location of the up- and downstream operators in the job’s
initialization phase. The type of connections between operator instances depends on their
relative location. In the case both producing and consuming instances are located on the
same Task Manager, two instances transfer records through an in-memory queue. In the case
they run on different Task Managers, the producer sends its output records via the network.
When performing an operator migration, it is necessary to buffer intermediate records as
long as the new consuming operator is not yet ready to receive records. Therefore, we
implement a dedicated queue that is able to retain buffers while not blocking the upstream
producers. It holds the buffers as long as possible in memory but it can also spill these
buffers to disk. The spilling phase is asynchronous, i.e., writing to disk will not block. As

134 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

soon as a new consuming operator starts, it first reads all spilled buffers and only afterwards
fetches newly-arrived buffers from memory to preserve FIFO semantic.

4.4 Query Plan Modifications

The protocol must at all times guarantee data integrity by not loosing any records or events
and maintain the processing semantics. For each single operator instance to modify, we need
to also consider its up- and downstream operators, since they should continue to process
records. Therefore, instead of handling each operator individually, the modification message
contains complete instructions for all operators. The logic for preparing this modification
message is located in the Modification Coordinator, each operator simply follows the
instructions contained in the modification message. We trigger the modification through
RPC:s to the source vertices, whereas we rely on the dataflow channels to propagate the
modification message to remaining vertices with the same speed of records. Additionally,
by relying on Flink data flow mechanism, all messages maintain FIFO semantics and are
processed exactly once.

4.4.1 Upstream Operators

The checkpointing mechanism guarantees fault tolerance by aligning the checkpoint markers
for each incoming data stream in each operator. Each operator instance receives records and
events from the upstream operator. It also buffers pending records during the alignment
phase of a checkpoint. This phase occurs when an instance has not received all the markers
for its upstream instances and thus needs to buffer the incoming records for the blocked
channels. Therefore, in case an operator wants to migrate to a different Task Manager, the
SPE needs to migrate those buffers as well, increasing the state size. Because these buffers
are not part of the internally-managed state, we need to handle them separately. To this end,
the modification mechanism ensures that all upstream operators perform a custom alignment
procedure on the sending side. Modification messages contain an upcoming checkpoint id.
When the checkpoint with that id is triggered, the upstream operators broadcast checkpoint
barriers along with a modification acknowledge message to the migrating downstream
operators. This event signals to consumer operators that the upstream operator is spilling
all further records and events to disk. Hence, it is safe to expect no new buffers from this
operator instance. Synchronizing on a checkpoint on the sending side guarantees that no
data are currently in-flight between the operators and the target operator has no buffered
data. Therefore, it is safe to take further actions, such as pausing the operator for a migration.
However, this also means that the modification has to wait until that specific checkpoint is
acknowledged at the producing operators. The checkpointing interval determines how often
a checkpoint is triggered by the Checkpoint Coordinator. The duration of taking a specific
checkpoint depends on many factors, but most importantly on the number of operators in
the job and the actual state size. Therefore, for jobs with small state and a low checkpointing
interval, the SPE completes a modification trigger message in a matter of seconds. For jobs
with large state and thus long checkpointing interval, the waiting time for the checkpoint to
finish may be significantly longer than the duration of the actual modification itself.

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 135

4.4.2 Target and Downstream Operators

If an operator reacts to a trigger message, it will transition into a new state according to
the specific modification and wait for further actions or events. Instances of downstream
operators generally only wait for the target operators to react. In case the location of the
target operator changes, such as during a migration, downstream instances receive the new
location in the last record and then update the connection to that new upstream instance
accordingly.

S Protocol Implementation

The following section describes each modification operation in detail. These are migrating
operator instances across Task Managers, introducing new operators into a running job and
replacing user-defined functions of operators at runtime.

5.1 Operator Migration

In Figure 2, we provide an overview of the four steps involved in a migration. Upon a
migration request, the Modification Coordinator retrieves all operators on that specific Task
Manager and allocates new execution slots. It checks if enough resources are available, but
also assigns these new slots to each migrating operator. This step is essential as each slot
determines the location on which the operator instances will restart after state submission.
The Modification Coordinator creates the trigger message that contains instructions for
the involved operators and ingests it into the data flow through the source operators. This
message determines the operators to migrate as well as the upstream operators that react by
spilling their records to disk. Involved operators wait for the upcoming checkpoint marker
to trigger the actual migration. When the Checkpoint Coordinator introduces that marker
in Step 2, all upstream operators stop sending records to the migrating instances. Every
operator starts the migration sequence by collecting and transmitting its current state to the
Modification Coordinator as well as transitioning into the Pausing state. Additionally, it
sends its upcoming new location to all downstream operators, as shown in Step 3. Finally,
the task initiates the release of all allocated resources and enter the Paused state. As soon
as the Modification Coordinator receives the confirmation of a successful transition to the
Paused state, it restarts the operator. In Step 4, the Modification Coordinator attaches the
state location and starts the execution in the previously assigned task slot. In addition, it
will compute the new in- and outputs of the instance of the migrating operator based on
the updated location of all other migrating operators instances. We rely on the checkpoint
mechanism of Flink to collect and reassign the state of every operator.

5.2 Introduction of new Operators

The modification protocol also enables the modification of the data flow itself, in particular,
the introduction of new operators into a running query. The requirement for this modification

136 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

Checkpoint Modification State Checkpoint Modification State
Coordinator Coordinator Storage Coordinator Coordinator Storage

Trigger Migration j

O =" al

Trigger Checkpoint

\,

Upstream Migrating Downstream Upstream Migrating Downstream
instances instances instances instances instances instances
Checkpoint Modification State Checkpoint Modification State
Coordinator Coordinator Storage Coordinator Coordinator Storage
X E
Transfer state | Restart instance @ i
O‘ ,—’O i Retrieve
---- H State
Upstream Migrating ~ Downstream Upstream Migrating Downstream
instances instances instances instances instances instances
B Trigger Migration Marker [Checkpoint Marker ~— TCP Data Exchange ----p» RPC Exchange

Fig. 2: Overview of modification protocol procedure

is to provide the SPE with compiled code for the new operators. Apart from that, introducing
operators works similarly to migrating operator instances. The set of all upstream operators
is formed by all operator instances directly before the new operator. Similarly, the set of
downstream operators consists of all operators after the operator that should be inserted. As
soon as all upstream operators successfully acknowledge the spilling phase, the Modification
Coordinator deploys the new operator instances. The deployment payload also contains the
compiled code for the new operators. Prior to a modification, our protocol enforces that new
operators do not violate any type constraints of the up- and downstream operators.

5.3 Changing the Operator Function

This modification operation enables replacing the UDF of an operator at runtime. Similar to
introducing an operator at runtime, the user needs to provide the new code for the target
UDFs. The Modification Coordinator then introduces the modification message in the
dataflow containing the checkpoint id and the reference for the new UDF. Through this
reference, each Task Manager involved in the modification asynchronously fetches the actual
new code once. Afterwards, each operator instantiates the new UDF and registers a callback.
When the SPE completes the checkpoint with the ID specified in the modification message,
every Task Manager triggers the callback locally. The purpose of the callback is to replace
the operator function with the new one only when the SPE completes a global checkpoint.
The rationale behind this choice deals with guaranteeing exactly-once processing semantic.
We need to ensure that we consistently process each record with the new UDFs only after a
specific point in time.

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 137

6 Evaluation

In the following, we present the empirical evaluation of our proposed modification protocols.
We use the Nexmark and a custom benchmark to evaluate our protocols. We present the
performance metrics for the operator migration, introduction a new operator; as well as the
replacement of UDFs. Finally, we discuss the results and findings of our work.

6.1 Data Generator

In order to minimize the dependencies and not benchmark external systems, we implement
a custom data generation and a message queuing system based on the work of Karimov et
al. [Kal8]. We prefer an external generator over consuming from an internal Flink source
because this may lead to unrealistic throughput and latency metrics as the source’s record
generation affects the overall system performance. In case of back-pressure, for instance,
Flink is not able to produce new data because of the unavailability of network buffers. We
use our data generator in all the following benchmarks to create a constant, non-fluctuating
workload.

6.2 Cluster Environment and Benchmark Setup

We run all the experiments on an 8-nodes cluster, each with 48 cores and 48 GB of memory.
Out of the 8 machines, one is dedicated to the Flink Job Manager, five run the Task Managers
and the remaining two machines host three data generator instances each. This ensures that
the generator instances do not interfere with neither the Job Manager nor the Task Managers.
Our benchmarks have a warm-up phase of 10 minutes, after which each modification is
triggered. For all benchmarks without windowing, we calculate the latency by subtracting
the record’s creation timestamp from its arrival time at the sink. If not mentioned otherwise,
the filesystem state backend is used for the checkpointing mechanism.

6.3 Workloads

This section introduces the workloads with which we have evaluated the migration protocol.

6.3.1 Stateful Map Query

The first benchmark is a stateful map query (SMQ) with a source, a stateful map, and a
sink operator. The sources read monotonically-increasing numbers along with a creation
timestamp. Each map operator counts the number of elements this particular instance has
received so far and appends that number to the output tuple. Finally, the sink computes
the overall latency for each element by subtracting the event’s timestamp from the current
timestamp and writes everything to disk. This benchmark is used to demonstrate the
correctness of the migration mechanism with small state size. In addition, it demonstrates
the mechanism with many operators of varying degree of parallelism. The source operator,
the map operator, and the sink operator have 60, 80, and 70 parallel instances, respectively.

138 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

6.3.2 Nexmark Benchmark

The modification protocol is suited for streaming queries with large state, which need longer
to write and recover their state in case of failures. For this purposed, we select Query 8
(NBQS) of the Nexmark Benchmark Suite [Tul8]. This benchmark represents a three-entity
online auction system and is designed to measure the performance of various aspects of
a streaming system. The three entities are the stream sources persons, auctions, and bids.
The person source emits a registration event, every time a new user registers in the auction
system. The auction source emits events for each newly created auction by a specific person.
Finally, persons may bid on auctions, which creates a bid event emitted by the respective
source. Query 8 finds those persons who created a new auction within a certain time frame
after signing up at the auction service. We implement this query through a windowed join
using a tumbling window of 20 minutes in event time. Since this benchmark generates a
substantially larger state than the previous benchmarks, it is not feasible to write the state to
disk every single time. For job with large state, writing gigabytes-sized state to disk simply
takes too much time. Therefore, we leverage RocksDB3, i.e., the Flink-embedded key-value
store, which offers incremental checkpointing. We set the checkpointing interval to 30s.

6.4 Migration Protocol Benchmark

This section demonstrates the migration operation on the SMQ and NBQS8. We compared
our migration technique against the Flink mechanism of canceling and restoring a job with
a savepoint. As Flink has no special operation for simultaneously taking the savepoint and
canceling the job, those operations can only occur subsequently. Therefore, Flink waits
until all operators have successfully acknowledged the savepoint and then cancels the query.
While taking a savepoint, the job continues to consume records, which means that all
in-flight records are not actually part of the savepoint and are therefore lost upon restoring
the job.

6.4.1 Stateful Map Job Performance Drill Down

Savepoint. Figure 3a shows the duration for each event, when canceling and restoring the
job from a savepoint. Initially, most of the time is spent on establishing the connection
to submit the cancellation command to the job, whereas actually canceling takes only
about 300 ms. The system stores savepoint (100 KB) on a shared file system. Restoring
and scheduling the job takes roughly 3 s. This adds up to a total duration of around 7.5s.
The latency spike in Figure 3b represents the time in which the streaming job restarts and
corresponds to the actual restarting duration of about 4.5 s.

Migration. Figure 4a shows the duration for each step when migrating all operator instances
from one specific Task Manager. The initialization for sending the TriggerMigration
messages takes a bit less than 3 s. The next 2 s are spent waiting for the upcoming checkpoint
barriers to arrive at the job sources, upon which they will spill to disk and broadcast their

3 http://rocksdb.org/

http://rocksdb.org/

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 139

[os | s | 25 | 3 | as | ss | & |
Submitting Cancelation
C 1

A

Restoring job from Savepoint

' o
Canceling Job with Savepoint ~ Scheduling Job

(a) Event timeline for canceling and restoring the stateful map job via a savepoint

3 4800
§ 4200] ¢ Single record I

i |

€ 2400 ‘
.£ 1800 ‘

é 608

©

- 0 1000000 2000000 3000000 4000000
Element index

(b) Individual records latency

Fig. 3: Benchmark results for canceling and restoring the Stateful Map Job via a savepoint

new location. It takes almost another 1s until the map operators are able to enter their
migration. This happens once they receive either the spilling to disk events or the new
location messages from all upstream sources. The sink migrations are fast and take less than
0.3s. The long duration of almost 1.5 s might be explained by communication overhead
introduced by the high degree of parallelism. In total, our mechanism migrates 34 operator
instances, while 112 operator instances spill to disk during the migration. The migrating
instances are 10 source, 12 map and 12 sink operators with a total migrated state size of
17kB. We see the latency spike at the time of the migration of about 3500 ms, as shown
in Figure 4b. This is because the actual duration of the migration without waiting for
the checkpoint barriers takes about 3 s plus some additional delay for reconnecting to the
operators. The migrated operators continue to process records after the migration, whereas
the old operator instances stop their execution.

6.4.2 Nexmark Benchmark Performance Drill Down

Savepoint. Figure 5a shows the complete duration for canceling and restoring the job via a
savepoint. The system needs about 161 s from submitting the savepoint command until the
state has actually been stored in the state backend. We show this in Figure 5b as there is no
decrease in sent records due to the fact that the job sources still consume data. The state
size after running the Benchmark for about 12 min is about 13.4 GB. The complex setup is
the cause of the long cancellation duration.

Migration. Figure 6a shows the complete duration for migrating all operators from one
specific Task Manager. The system spends almost 1 min waiting for the upcoming checkpoint
barrier to arrive. This is due to the 30 s checkpointing interval of which at least one full
cycles needs to pass. Since two times the checkpointing interval is also the maximum time

140 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

os | 1s | 2s | 3s | 4s | ss | 6 | 75 |
Submitting Migration
V D _.-- Waiting for
i -~ upstream operators
3 P
Sending TriggerMigration-message ~ Source M{iP . ™ Sink
to all sources migrations migrations migrations

(a) Event timeline for migrating operators of the stateful map job

S 3000 » Single element z}
£ 24001 |

0 1000000 2000000 3000000 4000000
Element index

(b) Individual records latency

Fig. 4: Benchmark results for performing a migration on the Stateful Map Job

[os] 1-161s [1e2s [163s | 16as | 1655 | 166s | 167s | 168s | 168s | 169-191s
| Submitting Savepoint |

Canceling Job with Savepoint |
| Restoring job from Savepoint
]

Restarting Job Downloading State |

(a) Event timeline for canceling and restoring the Nexmark Benchmark via a savepoint

2

g

£ 4000

[}

@ 3200

€ 2400 MWMMWWT S
(%]

o 1600 Triggered Savepoint

o 800 Restarting job from

o Savepoint

g 0

< 0 150 300 450 600 750 900 1050 1200 1350

Time in seconds

(b) Average throughput at the 80 generators
Fig. 5: Benchmark results for canceling and restoring NBQS via a savepoint

it takes until the modification mechanism triggers, this represents almost the worst case

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 141

waiting duration. The migration moves 24 operators in total across Task Managers, 8 person
and 8 auction sources, as well as 8 window operators. The remaining 64 job sources are
instead spilling to disk. The total state size for the job at the point of the migration is about
13.5 GB. However, only about 2.7 GB are actually stored and retrieved via the state backend
for the window operators in about 21 s. Figure 6b shows that the throughput at the generators
is not affected by the migration, since pausing and restarting the sources on different Task
Manager takes less than 250 ms.

[os | 1s | 2s | 3s | 4-s8s | sos | eo-81s |
Submitting Migration
‘J waiting for upstream
operators
Aik

v

Sending TriggerMigration-message AuctionSource PersonSource Window
to all sources migrations migrations migrations

(a) Event timeline for migrating operators of NBQ8

2500 WMWMMMW*
2000

1

1

500 Avg. sent elements
for 40 generators

e Started migration
Started migration

Averaged sent elements

0 150 300 450 600 750 900 1050 1200 1350
Time in seconds

(b) Average throughput at the 80 generators

Fig. 6: Benchmark results for performing a migration on NBQ8

6.5 Introducing new operators at runtime

To demonstrate the introduction of an operator at runtime, we use the SMQ (see Section
6.4.1). Its function filters the input stream by only letting every Sth record pass. We set
the checkpointing interval to 1 s with concurrent checkpoints enabled. Figure 7 gives an
overview of the modification duration. Most of the time for uploading the custom jar
and submitting the command to Flink is spent establishing the connection. The actual
preparation and sending of the trigger message takes less than 300 ms. It takes around
2 s for the corresponding checkpoint barrier to arrive, upon which all sources broadcast
the new filter operator location. The source operators acknowledge the spilling to disk,
while the map operators simultaneously update their inbound connections. As soon as all
acknowledgments have been received, the new filter operator starts, which takes about
300 ms. In total, it takes only about 550 ms from the first spilling source to start and connect
all 60 filter operators. The average throughput of the generators remains unaffected.

142 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

[os T as | 2s | 35 | 4s | ss | e | 7s | 8 | 9s | 10s
Uploading Jar

Submitting Command
x
Pid I 4

v
A ¢

Sending IntroduceOperator ~ Sources s}SiII Maps updated Startiné\new
to all Source to Disk InputChannels Filter Operators

Fig. 7: Event timeline for introducing the filter function

6.6 Replacing the operator function at runtime

The last benchmark evaluates the replacement of a UDF of an operator at runtime. We reuse
the SMQ with the filter operator already running. The source, filter, and map operators have
60 parallel instances, whereas the sink has 40. We set the checkpointing interval to 1 second
with concurrent checkpoints enabled. Figure 8a shows the timeline of the introduction
mechanism. Most of the time for uploading the new compiled code and submitting the
command to Flink is spent on instantiating the client and establishing the connection. The
actual preparation and sending of the trigger messages takes around 300 ms. Downloading
the code on each Task Manager takes around 350 ms. Waiting for the upcoming checkpoint
barrier, upon which all filter operators will replace their UDF with the one from the jar-file,
takes around 1 s. In total, it takes a bit more than 8 s to replace the operator function. The
synchronization on the checkpoint barriers may be omitted depending on the use case.
Synchronizing only ensures that switching the function is aligned with the checkpoint
mechanism, hence, it simplifies the recovery procedure. However, the synchronization is
not necessary, e.g., all operators could immediately replace their function when receiving
the trigger message. Replacing the operator function has nevertheless no impact on the
throughput. Figure 8b shows the record latency for every 200th element in order to visualize
the drop in incoming records after the function switch.

6.7 Discussion

The checkpointing settings of a given query have a big influence on the overall modification
duration because of the eventual synchronization on every checkpoint barriers. For jobs
with small state, fast checkpointing intervals are feasible, thus enabling the mechanism to
react quickly on events, such as user input. For jobs with large state, the synchronization
drastically limits the reaction time, however, the overall mechanism still performs better
than the Flink baseline with savepoints. We are able to trigger all modification in less than
6 s for jobs with small state. For jobs with larger state, this duration increases up to about
60 s. This includes the heavy initialization overhead for the initial submission of the trigger
as well as further messages. The experimental results show that it is feasible to migrate
stateful operator instances at runtime with a negligible impact on the query performance.
The operator state job demonstrated the migration of multiple, subsequent operators in 7.1 s.
The modification duration grows with the number of subsequent operator instances, however,
the impact is still low compared to the initial submission and the waiting duration. For the
NBQ8, the migration mechanism showed big performance improvements, outperforming

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 143

s | 15 | 25 | 35 [45 | 55 [e | 75 [& |
Submitting Jar
Submitting Command
P4
- '1
Sending Command to Downloading User-Jar !
all FilterOperators from BlobServer Replacing UDF

on last TM

(a) Event timeline for switching the filter operator

15007 —— switched function
1250

1000
750
500
250

Latency in milliseconds

0 1000000 2000000 3000000 4000000
Element index

(b) Individual records latency

Fig. 8: Benchmark results for switching the filter function

the savepoint mechanism by a factor of 2.3, even including the long waiting and state
transferring time. This is due to the long shutdown sequence of the savepoint mechanism,
which transfers each operator state to the state backend. Table 1 summarizes the results of
the migration operation. Additionally, Flink savepoint mechanism has the disadvantage of
loosing in-flight records that flow from the sources during the savepoint procedure. When
consuming from a persistent data source, such as Apache Kafka, we may still achieve
exactly-once processing guarantees by replaying the missed records. However, the system
looses records in the presence of non-persistent data source. Our migration mechanism
prevents this from happening because stream sources never consume records that they
cannot process. Furthermore, our mechanism does not introduce tangible throughput spikes
at the generator because sources generally have very small state, which allows for quick
migration.

Benchmark Migrated Migrated Overall Waiting Migration
State Size Operators Duration Time Duration

SMQ 17kB 34 7.1s 2s 24s

NBQS8 2.7GB 24 81.8s 54.9s 23.7s

Tab. 1: Migration overview for SMQ and NBQ8

Although introducing an operator into a running job suffers a few limitations, as mentioned
in Section 5.2, it still enables many complex modification scenarios. Introducing operators
enables altering the physical data flow of a DAG in under 10 s, depending on the checkpointing
settings. With some further work, it would enable more sophisticated modification scenarios,

144 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

such as operator reordering. Replacing the operator function is a modification operation
that enables fast tweaking of the streaming job in under 9 s with no performance impact. In
the current version, users can leverage it to avoid restarting a running job, e.g., by adding
additional logic to a UDF. It also enables more complex modification scenarios, such as
tweaking the functionality of operator function based on internal or external triggers, such
as runtime metrics.

7 Related work

Schneider et at. present an auto-parallelization mechanism for general-purpose, distributed
data stream processing systems that deals with workload and resource aware scaling
of operator instances as well as runtime state migration [Sc12]. We differentiate from
their work as our migration mechanism is specific for queries that need exactly-once
processing semantic as well large state. Wu et al. present ChronoStream, a distributed stream
processing system specifically designed for elastic stateful stream computation [WT15].
ChronoStream achieves horizontal and vertical scalability in order to cope with workload
fluctuation by treating internal state as a first-class citizen. The delta-compressed state
of a task is separated into computational slices, which are duplicated and managed by
a locality-aware placement mechanism across all machines. Through both mechanisms,
they drastically lower the overhead caused by network I/O in case of migrations. Although
their evaluation demonstrates linearly elasticity without sacrificing system performance or
affecting collocated tenants, Ding et al. argue that their transactional migration protocol
may cause incorrect results due to synchronization issues [Dil5]. In contrast to our solution,
they do not consider changes to the data flow and take placement decisions only based on
the migration protocol, but not overall system performance. Heinze et al. [He14] deal with
finding the right point in time to take scaling decisions through an online learning algorithm.
They empirically compare their solution [Hel5] against local and global threshold-based
mechanisms presented by Lorido et al. [LML14]. Although their results indicate that their
auto-scaling technique performs better than the previous solutions, their solution only
applies a simplistic migration protocol. In contrast, we design our protocols to cope with
more demanding requirements, e.g., large state, exactly-once semantic. Nasir et al. [Nal5b]
propose the concept of partial key grouping in response to load imbalance caused by
skewness in the key distribution of the input. Their approach monitors the number of tuples
sent to two downstream instances. Each operator instance sends a tuple to the one with
lower load estimation. As a result, tuples with the same key are routed to different parallel
instances of the same operator. The authors extend their work to also include a mechanism
for the “hottest” keys in the stream and assign more operator instances to those keys [Nal5a].
In contrast to our approach, their solution does not alter the running query (i.e., no state
migration) but only uses a streaming algorithm to determine the number of workers for
“heavy hitter” keys, which is minimal yet sufficient for load balancing. Mai et al. introduce
Chi [Mal8], a system that allows for dynamic reconfiguration of a running query. They use
a migration mechanism similar to ours, however, they do not consider queries that result in
large state and they do not further investigate such a specific scenario. Castro Fernandez

On-the-fly Reconfiguration of Query Plans for Stateful Stream Processing Engines 145

et al. also present a mechanism to scale up and down streaming topologies and to deal
with operator failures [Cal3]. Our solution is different because of the explicit handling of
large state and extended range of modifications, e.g., altering an execution plan at runtime.
Systems based on micro-batching such as Apache Spark allow for reconfiguration at the end
of each micro-batch, however, this results in higher latency and lower throughput because of
synchronization. Finally, we point out that our approach is orthogonal to public and private
cloud [Am] and resource managers [Hill, Val3] because we tackle fault-tolerance and
resource elasticity at application-level, whereas they isolate running applications through
virtual machines or containers.

8 Conclusion

This paper examines the feasibility of modifying the execution of a running streaming job
in Apache Flink. Our major contribution is the implementation of a modification protocol
that enables three types of modifications, namely migrating operator instances, introducing
new operator instances, as well as changing an operator’s UDF. We evaluate the protocol
using one custom benchmark and the Nexmark Benchmark. The results show that migrating
operators for jobs with small state is as fast as using Flink’s savepoint mechanism. Migrating
operators of a job with 15 GB of state even outperforms the savepoint mechanism by
a factor of 2.3. Furthermore, our migration mechanism solves the problem of data loss
during job restart that arises when not consuming records from a persistent data source.
Changing the data flow itself by either introducing new or replacing existing operators can
be performed in less than 10s and 8 s, respectively. The modification protocol opens the
door for a variety of further enhancements to a running streaming job. It allows for online
optimizations of the running job that were not possible before. An example is up- and
down-scaling operator instances, which enables the SPE to dynamically adapt to changes in
the incoming workload without halting the whole job. Lastly, removing the synchronization
on the checkpoint barriers can significantly reduce the overall modification duration and
increase the responsiveness of our mechanism.

Acknowledgment. This work was funded by the European Union through PROTEUS (ref.
687691) and STREAMLINE (ref. 688191).

References

[Al14] Alexandrov, A.; Bergmann, R.; Ewen, S.; Freytag, .; Hueske, F.; Heise, A.; Kao, O.; Leich,
M.; Leser, U.; Markl, V. et al.: The Stratosphere Platform for Big Data Analytics. The
VLDB Journal, 2014.

[Am] Amazon EC2. https://aws.amazon.com/ec2/.

[Cal3] Castro Fernandez, R.; Migliavacca, M.; Kalyvianaki, E.; Pietzuch, P.: Integrating Scale
out and Fault Tolerance in Stream Processing Using Operator State Management. ACM
SIGMOD, 2013.

[Cal7] Carbone, P.; Ewen, S.; Féra, G.; Haridi, S.; Richter, S.; Tzoumas, K.: State Management in
Apache Flink: Consistent Stateful Distributed Stream Processing. VLDB, 2017.

146 Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

[DG04]
[Dil5]
[DM17]
[HBS73]
[Hel4]
[Hel5]

[Hill]

[Hil4]
[Hiil5]
[Kal8]
[Kul5]
[LML14]

[MalS8]

[Nal5a]
[Nal5b]
[Sc12]
[ScZ05]
[Tol4]
[Tul8]
[Val3]
[WT15]

[Zal3]

Dean, J.; Ghemawat, S.: MapReduce: simplified data processing on large clusters. USENIX
OSDI, 2004.

Ding, J.; Fu, T.; Ma, R.; Winslett, Ma.; Yang, Y.; Zhang, Z.; Chao, H.: Optimal Operator
State Migration for Elastic Data Stream Processing. CoRR, abs/1501.03619, 2015.

Del Monte, B.: Efficient Migration of Very Large Distributed State for Scalable Stream
Processing. VLDB PhD Workshop, 2017.

Hewitt, C.; Bishop, P.; Steiger, R.: A Universal Modular ACTOR Formalism for Artificial
Intelligence. IJCAI, 1973.

Heinze, T.; Pappalardo, V.; Jerzak, Z.; Fetzer, C.: Auto-scaling techniques for elastic data
stream processing. In: IEEE ICDE Workshops. 2014.

Heinze, T.; Ji, Y.; Roediger, L.; Pappalardo, V.; Meister, A.; Jerzak, Z.; Fetzer, C.: FUGU:
Elastic Data Stream Processing with Latency Constraints. IEEE Data Eng. Bull., 2015.
Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.; Katz, R.; Shenker, S.;
Stoica, I.: Mesos: A Platform for Fine-grained Resource Sharing in the Data Center. In:
USENIX NSDI. 2011.

Hirzel, M.; Soulé, R.; Schneider, S.; Gedik, B.; Grimm, R.: A Catalog of Stream Processing
Optimizations. ACM CSUR, 2014.

Hiiske, F.: Specification and Optimization of Analytical Data Flows. PhD thesis, TU Berlin,
2015.

Karimov, J.; Rabl, T.; Katsifodimos, A.; Samarev, R.; Heiskanen, H.; Markl, V.: Stream
Processing Performance in Online Game Scenarios. IEEE ICDE, 2018.

Kulkarni, S.; Bhagat, N.; Fu, M.; Kedigehalli, V.; Kellogg, C. et al.: Twitter Heron: Stream
Processing at Scale. ACM SIGMOD, 2015.

Lorido, T.; Miguel, J.; Lozano, J.: A review of auto-scaling techniques for elastic applications
in cloud environments. Journal of grid computing, 2014.

Mai, L.; Zeng, K.; Potharaju, R.; Xu, L.; Venkataraman, S.; Costa, P.; Kim, T.; Muthukrish-
nan, S.; Kuppa, V.; Dhulipalla, S.; Rao, S.: Chi: A Scalable and Programmable Control
Plane for Distributed Stream Processing Systems. VLDB, 2018.

Nasir, M.; Morales, G.; Kourtellis, N.; Serafini, M.: When Two Choices Are not Enough:
Balancing at Scale in Distributed Stream Processing. CoRR, abs/1510.05714, 2015.
Nasir, M; Morales, G.; Soriano, D.; Kourtellis, N.; Serafini, M.: The power of both choices:
Practical load balancing for distributed stream processing engines. IEEE ICDE, 2015.
Schneider, S.; Hirzel, M.; Gedik, B.; Wu, K.: Auto-parallelizing stateful distributed
streaming applications. ACM PACT, 2012.

Stonebraker, M.; Cetintemel, U.; Zdonik, S.: The 8 Requirements of Real-time Stream
Processing. ACM SIGMOD, 2005.

Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J.; Kulkarni, S.; Jackson, J.;
Gade, K.; Fu, M.; Donham, J. et al.: Storm@ twitter. In: ACM SIGMOD. 2014.

Tucker, P.; Tufte, K.; Papadimos, V.; Maier, D.: NEXMark - A Benchmark for Queries over
Data Streams. 2018.

Vavilapalli, V.; Murthy, A.; Douglas, C.; Agarwal, S.; Konar, M. et al.: Apache Hadoop
YARN: Yet Another Resource Negotiator. In: ACM SOCC. 2013.

Wu, Y.; Tan, K. L.: ChronoStream: Elastic stateful stream computation in the cloud. IEEE
ICDE, 2015.

Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I.: Discretized Streams:
Fault-tolerant Streaming Computation at Scale. ACM SOSP, 2013.

Text

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 149

A Hybrid Information Extraction Approach Exploiting
Structured Data within a Text Mining Process

Cornelia Kiefer! Peter Reimann? Bernhard Mitschang3

Abstract: Many data sets encompass structured data fields with embedded free text fields. The
text fields allow customers and workers to input information which cannot be encoded in structured
fields. Several approaches use structured and unstructured data in isolated analyses. The result of
isolated mining of structured data fields misses crucial information encoded in free text. The result
of isolated text mining often mainly repeats information already available from structured data. The
actual information gain of isolated text mining is thus limited. The main drawback of both isolated
approaches is that they may miss crucial information. The hybrid information extraction approach
suggested in this paper adresses this issue. Instead of extracting information that in large parts was
already available beforehand, it extracts new, valuable information from free texts. Our solution
exploits results of analyzing structured data within the text mining process, i.e., structured information
guides and improves the information extraction process on textual data. Our main contributions
comprise the description of the concept of hybrid information extraction as well as a prototypical
implementation and an evaluation with two real-world data sets from aftersales and production with
English and German free text fields.

Keywords: information extraction, clustering, text mining, free text fields

1 Introduction

Many data sets in research and industry capture information both in structured and
unstructured data fields. Structured data fields are suitable if the data type and value
domain fit the perceived purpose. For example, structured data fields are appropriate to
store the duration of a downtime in a production line in seconds. Unstructured data fields
are better if no suitable structured type is available or if one needs to express certain
issues in natural language to be readable and understandable by human users. For example,
unstructured free text fields are adequate when explaining how to repair a machine, since this
information is complex and cannot be captured in structured data. Especially, humans tend
to provide more complete information using natural language texts than using structured

! University of Stuttgart, Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstr. 12,
Germany cornelia.kiefer @ gsame.uni-stuttgart.de

2 University of Stuttgart, Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstr. 12,
Germany peter.reimann @ gsame.uni-stuttgart.de

3 University of Stuttgart, Institute for Parallel and Distributed Systems, UniversititsstraBe 38, Germany bernhard.
mitschang @ipvs.uni-stuttgart.de

©@@®@® doi:10.18420/btw2019-10

https://creativecommons.org/licenses/by-sa/4.0/
cornelia.kiefer@gsame.uni-stuttgart.de
peter.reimann@gsame.uni-stuttgart.de
bernhard.mitschang@ipvs.uni-stuttgart.de
bernhard.mitschang@ipvs.uni-stuttgart.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-10

150 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

[o o o
|
|

Legend: i
| Isolated approaches i
1
1

E Hybrid approach gy

> R

Structured data

A/
] :.‘m?k”f A R
SRS I
F reé 'fié;ct
R

Fig. 1: Isolated information extraction approaches A on structured data and A’ on unstructured text
data yield results Ry and R;. Our hybrid information extraction approach uses analysis result R in
the text mining process and yields result R3, thus extending results R and R».

1
2
3

information [HW96]. Thus, it is important to extract information not only from structured
data, but also from unstructured, e.g., textual data as is mostly available in data sets from
production, aftersales and research.

Standard approaches for information extraction from unstructured text data do not use
structured data in text analysis (see Section 2). The result may be redundant information
already available from structured data. Moreover, isolated approaches on structured data
also miss crucial information. As illustrated in Figure 1, in contrast to these approaches, our
hybrid information extraction approach exploits analysis results obtained from structured
data in the text analysis pipeline.

The hybrid information extraction concept may be applied to all information extraction
approaches on structured data with embedded or linked text data. In this paper, we present the
concept and a prototypical implementation. In the evaluation, we present two real-world data
sets and apply the method to them. Since for these data sets and use cases, no information
on what to extract from the data is known beforehand, and no training data sets are available,
we select a clustering information extraction approach for the prototypical implementation.
Clustering is a robust and unsupervised means to extract information from text.

The goal of the suggested hybrid approach (yielding Rz in Figure 1) is to increase the
amount of new information, when compared to the information gained by the two isolated
approaches (R; and R; in Figure 1). In our evaluation based on the two real-world data sets
and the prototype, we denote the *degree of new information’ with i,,.,, and define it as
shown in Formula 1.

inew = (Cnew/N) (D

where ¢,y is the number of cluster names not already known from the structured column
and N is the number of all clusters considered.

A Hybrid Information Extraction Approach Exploiting Structured Data 151

By employing this purely quantitative metric, we are able to compare R; — R3 in a
straightforward way. Additionally, we can compare our results to the work of Ghazizadeh et
al. [GML14]. In future work, we are going to consider more qualitative insights as well as
additional quantitative metrics, e.g., based on entropy.

With an isolated approach on structured data, all information is extracted from the structured
data fields only. Thus, based on the definition above, i}y, = 0. Only, if information from
free text is employed, i,.,, increases. For example, if half of the cluster names are not yet
present in the structured information, iy, is 0.5. For Ry and R3, iy, differs due to the
exploitation of structured information available in the hybrid approach (R3). By filtering
out redundant information within the text mining process, the amount of new information
increases. For our prototype and the two real-world data sets, for R3, i,e is 0.21 and 0.43
higher, than for R;.

The main contributions of this paper are:

. A description of the concept of hybrid information extraction.

. A discussion of design issues of a prototypical implementation of the approach for
English as well as German free text fields.

. An evaluation of the hybrid information extraction approach. Here, we compare the
results of isolated approaches (cf. R; and R, in Figure 1) with results of our hybrid
approach (cf. R3 in Figure 1) and we show that i, is higher for the hybrid approach.
For this purpose, we apply the prototype to an open dataset on problems with cars in
aftersales (NHTSA data set*) and to a dataset on downtimes in a production line.

In the next two sections, we give an overview on work related to our approach and motivate
hybrid information extraction with an example use case. In Section 4, we describe our
method used for hybrid information extraction, and we discuss implementation details in
Section 5. We illustrate the benefit of our approach with two data sets in Section 6 and
conclude in Section 7.

2 Related Work

Plenty research works propose text mining approaches on free text. Compared to our work,
these publications make no use of analytical results of structured data in the text mining
process. Many approaches look at free text information in isolation. In the following, we
present an excerpt of these approaches which work with real data sets: Carter et al. show a
use case in the pharmaceutics domain where they mine the Pillreports.com database using
the k-means algorithm [CH14]. Gamon et al. apply clustering to mine opinions on cars in

4 https://www-odi.nhtsa.dot.gov/downloads/

https://www-odi.nhtsa.dot.gov/downloads/

152 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

the car reviews database>. The approach is based on a self-defined clustering algorithm
[Ga05]. Brooks focuses on preventing industrial accidents [BrO8]. In his approach, the SAS
Text Miner Software is used to mine workers’ compensation claims data. Clustering is based
on the Expectation Maximization algorithm. Forman et al. assist technical support staff in a
call center applying a self-developed clustering method on call logs [FKS06]. In many of
the data sets used in these isolated approaches, also information in structured data fields is
available. The main drawback of these approaches is however that they do not make use of
this information source.

Many approaches use both structured and unstructured information in parallel. Yet, these
approaches solely integrate the results of the isolated approaches. For many data sets like the
data considered in this work such approaches are problematic, since valuable information
may get lost (see Section 3). For example, Tan et al. mined data of a service center to
get information on the expected processing times of service requests. Mining is based on
structured data (the processing times) and case descriptions in free text fields [Ta00]. In their
approach, they build a classification model which uses features induced separately from
structured and text data. Chougule et al. speed up repair tasks of cars based on a framework,
which combines association rule mining, case-based-reasoning and text mining [CRB11].
While the whole framework considers structured as well as unstructured data, the text
mining component analyses the texts in isolation using hierachical clustering algorithms.

Similarly, many approaches convert unstructured text data into structured data fields with the
goal of merging structured and converted unstructured data and information. In contrast to
our method, the information extraction methods work on the texts in isolation. For example,
the DeepDive system structures free texts using statistical inference and machine learning
[Cel5]. Gubanov et al. present the data tamer system [GSB14], where the structuring of
textual data is based on external tools that are not described in more detail. After the
conversion of the unstructured text data, modules such as schema integration and entity
consolidation in data tamer may be applied.

Various approaches to information extraction are called hybrid, since they combine two
machine learning algorithms. Silva et al. combine naive bayes, the PART algorithm and the
k-nearest-neighbour with hidden markov models [SBP06]. Xiao et al. combine maximum
entropy and maximum entropy markov models [XZZ08]. These approaches still analyze
one type of data in isolation. They are not hybrid in the sense of using analytical results on
structured data in the text mining process.

The work most related to ours is by Ghazizadeh et al. [GML14] and uses the same data set
as we use (NHTSA data set, see Sections 3 and 6.1). Ghazizadeh et al. investigate reasons
for fatal car accidents. They apply latent semantic analysis and hierarchical clustering to
the free text fields in isolation. In difference to our approach, this work uses structured
information in a first step only, before clustering takes place, to filter out the relevant part
of the data. All structured information are ignored in the next steps of the information

5 https://www.msn.com/en-us/autos/

https://www.msn.com/en-us/autos/

A Hybrid Information Extraction Approach Exploiting Structured Data 153

extraction process. Ghazizadeh et al. [GML14] present evaluation results which show that
half of the cluster names correspond to vehicle components. These vehicle components
represent information which is also available in a structured data field in the data set. Thus,
only half of the clusters represent new and relevant information. In the hybrid approach
suggested in this work we adress this inconvenience.

While many approaches for the extraction of information from structured and free text data
exist, the main drawback is that they are isolated: they do not employ structured information
that is available and helpful within the text mining process. In this paper, we adress this
issue and show with two data sets from the product lifecycle that a hybrid approach to
information extraction leads to new information that otherwise would be hidden behind
redundant information.

3 Example Use Case

The department for National Highway Traffic Safety in the U.S. (NHTSA) wants to reduce
the number of traffic crashes. For this purpose, they conduct recalls of unsafe vehicles and
collect and analyze data on car crashes and problems with cars in a huge database since
1995. The data set contains structured information such as the car component affected.
Customers filled this data field choosing the appropriate car component from a dropdown
menu. Moreover, the NHTSA data set contains a free text field. The free text field describes
the car crash or problem with the car. In Table 1 we show a small example data set containing
information on the car component and a free text description.

Tab. 1: Example data set with structured (id, component) and unstructured information (description).

id component description

AIR BAG AIR BAG FAILED DURING ACCIDENT (...)

AIR BAG AIRBAG FAILED TWICE.

AIR BAG AIR BAG LIGHT FAILED.

STEERING VERY SENSITIVE STEERING AT HIGH VELOCITY (...)
STEERING STEERING FAILED.

ENGINE THE ENGINE SHUT OFF TWICE ON THAT DAY (...)
ENGINE ALL ENGINE LIGHTS CAME ON (...)

NN R W N~

An isolated analysis on structured data for example yields an ordered list of the most frequent
car components involved in car crashes (cf. Ry in Figure 1). An isolated analysis on the free
text field also lists primarily car components (cf. R, in Figure 1). The results of Ghazizadeh
et al. showed that half of the information in R; is not interesting to the analyst since it
contains too much redundant information also contained in the structured field and i,
thus is comparably low ([GML14], see Section 2). They applied an isolated latent semantic
analysis and hierarchical clustering approach to the NHTSA data set.

154 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

The hybrid approach tries to tackle this problem. It yields a list of frequently mentioned
terms that are not deducable from the structured part of the dataset. Ry and R, are oriented on
car components, but R3 mostly is oriented on issues. For example, in R3 (cf. R3 in Figure 1)
the analyst finds new valuable information among the 5 highest ranked clusters (which will
be discussed in more detail in Section 6.2): Many customers report problems in getting new
secure car parts that the manufacturers need to change due to a recall. In isolated approaches
the analyst misses this information since it is not present in Ry, and in R; it is ranked as
place 175 only (see Section 6.2 for more details on the prototypical implementation yielding
R»). This information may be crucial in preventing car crashes. Customers, while waiting
for the secure car parts, might decide to drive the car anyway. Furthermore, the information
in Rz can be used to improve and extend the categories available in structured data in a
feedback loop. The analyst may decide to add the *unavailability of car parts’ to the future
structured data values available to the customers who file a complaint in the NHTSA data
base.

4 Hybrid Information Extraction Approach

The goal of our approach is to extract more information from structured and free text data
in terms of a higher degree of new information as defined in Formula 1 in the introduction
to this work. In Figure 2, we illustrate an isolated approach to information extraction and
show the resulting table in Figure 3. In Figures 4 and 5, we show an example illustrating the
hybrid information extraction method and R3. Since we want to emphasize the difference
between standard isolated approaches and our hybrid approach, we do not describe in this
section preprocessing steps (such as tokenization) and vectorization, which both approaches
have in common. We explain these steps in detail in the next section. Here, we focus on the
steps special to the hybrid approach: (1) grouping and (2) removal.

In Figure 2 we illustrate an isolated approach. Here, free text fields are considered in
isolation and all free texts are clustered. Finally, the name of the cluster in which a free text
falls is added to the overall data set in the additional column ’cluster’ as shown in Figure 3.
The cluster name is based on the most frequent word in the cluster.

In Figure 4 we illustrate the first processing step of the hybrid approach, in which structured
data is used to group free text fields. Here, the NHTSA data set is grouped by the structured
data field on the car components into three groups (AIR BAG, STEERING and ENGINE)
(step (1)). In Figure 5, we illustrate the next step, in which we remove all information that
is already available in the structured data field on car components (step (2)). Only then,
the free texts are clustered (step (3)). Finally we add a new column to the table which
contains the name of the cluster, the result is shown in the last step in Figure 5. The isolated
approach adds cluster information such as ’air bag’ and ’steering’. This information is
already available in the structured field ’car component’ (see columns ’component’ and
*cluster’ in Figure 3). The hybrid approach results in clusters, such as ’light’ and ’fail’.
They represent new valuable information (see column ’cluster’ and compare to column

A Hybrid Information Extraction Approach Exploiting Structured Data 155

structured data fields unstructured data field

A
[\[\
Lo | componen: [gesrpion |

1

2

3

5

6

7

AIR BAG

AIR BAG

AIR BAG

STEERING

STEERING

ENGINE

ENGINE

AIR BAG FAILED DURING
ACCIDENT(...)

AIRBAG FAILED TWICE.
AIR BAG LIGHT FAILED.

VERY SENSITIVE STEERING AT
HIGH VELOCITY (..

STEERING FAILED.

THE ENGINE SHUT OFF TWICE
ON THAT DAY (...

ALL ENGINE LIGHTS CAME ON

()

consider unstructured free texts
in isolation

AIR BAG FAILED DURING ACCIDENT (...)

AIRBAG FAILED TWICE.
AIR BAG LIGHT FAILED.

VERY SENSITIVE STEERING AT HIGH VELOCITY (...)

STEERING FAILED.

THE ENGINE SHUT OFF TWICE ON THAT DAY (...)

ALL ENGINE LIGHTS CAME ON (...)

. cluster: use clustering to
extract information

Fig. 2: Concrete example illustrating an isolated approach to information extraction from free text
fields.

m component | description cluster

AIR BAG
2 ARRBAG
3 AIRBAG
4 STEERING
5 STEERING
6 ENGINE
7 ENGINE

AIR BAG FAILED DURING
ACCIDENT (...)

AIRBAG FAILED TWICE.

AIR BAG LIGHT FAILED.

VERY SENSITIVE STEERING AT
HIGH VELOCITY (...)

STEERING FAILED.

THE ENGINE SHUT OFF TWICE
ON THAT DAY (...)

ALL ENGINE LIGHTS CAME ON
()

air bag

air bag

air bag

steering

steering

engine

engine

Fig. 3: Concrete example illustrating the result of isolated information extraction from free text
containing redundant information such as "air bag’ and ’steering’.

156 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

(1) group: use a structured field (e.g.,
component) for a first grouping of
free text fields

structured data fleks unstructured data feld

f ! | AIR BAG FAILED DURING ACCIDENT (...)

o Jcomporen [aesarpton |
AIRBAG FAILED TWICE.

1 AIRBAG AIRBAG FAILED DURING ACCIDENT (...)

AIR BAG LIGHT FAILED.

2 AIRBAG AIRBAG FAILED TWICE.

N T
VERY SENSITIVE STEERING AT HIGH

4 STEERING VERY SENSITIVE STEERING AT HIGH VELOCITY (...) L
STEERING FAILED.

5 STEERING STEERING FAILED.

6 ENGINE THE ENGINE SHUT OFF TWICE ON THAT DAY (...) THE ENGINE SHUT OFF TWICE ON THAT
DAY (...)

7 ENGINE ALLENGINE LIGHTS CAME ON (...) ALL ENGINE LIGHTS CAME ON {(...)

Fig. 4: Concrete example illustrating the distinguishing step "group’ of the hybrid approach to
information extraction from free text fields.

(2) remove: information from free texts (3) cluster for add information on clusters to the data
which is already available in a each group
structured field (e.g., component s id | component | description [cluster |
removed) 1 AIRBAG AIR BAG FAILED DURING fail

ACCIDENT..)

AWR-BAG-FAILED DURING ACCIDENT {(...)

ARBAG FAILED TWICE.
AR-BAG-LIGHT FAILED.

2 AIRBAG AIRBAG FAILED TWICE. fail

3 AIRBAG AIR BAG LIGHT FAILED. light

4 STEERING VERY SENSITIVE STEERING sensitive
escrpion . AT HIGH VELOCITY (...)

VERY SENSITIVE STEERING AT HIGH
VELOCITY (...)

STEERING FAILED.

THE ENGHNE SHUT OFF TWICE ON THAT
DAY (...

ALL ENGINE LIGHTS CAME ON {...) _

5 STEERING STEERING FAILED. fail

6 ENGINE THE ENGINE SHUT OFF shut off
TWICE ON THAT DAY (...)

7 ENGINE ALL ENGINE LIGHTS CAME light
ON (..)

Fig. 5: Concrete example illustrating the distinguishing steps ‘remove’ and ’cluster for each group’
of the hybrid approach to information extraction from free text fields and the result containing new
valuable information such as ’fail’ and ’light’.

A Hybrid Information Extraction Approach Exploiting Structured Data 157

’component’ in Figure 5). We base our approach on three predominant characteristics of
structured data sets with embedded free text fields, which we discuss in more detail in the
remaining paragraphs of this section.

First of all, free text fields store additional valuable information. This was confirmed in
many studies (see Section 2). Various methods, such as relation extraction, classification and
clustering can extract valuable information stored in free text [ZM16]. We use clustering
since it is suited best for our use cases. Moreover, Ghazizadeh et al. [GML14] also used
a clustering approach, and we want to compare our results with their findings. However,
the hybrid information extraction approach suggested in this paper is independent from the
concrete information extraction method chosen. Also relation extraction and classification
approaches may benefit from applying the concept to them. For example, a classifier which
uses structured fields as well as unstructured free text fields in the feature generation, may
benefit from removing information already present in structured fields from the free texts. The
concrete effects on further information extraction methods need to be investigated in future
work. Here, we focus on the validation of the core concept and employ a state-of-the-art
clustering technique.

Second, in many data sets in industry and research, we can group unstructured free text
fields via information encoded in structured data fields. For example, the NHTSA data
set (see Section 6.1) may be divided into groups based on structured fields such as car
component, year and car make. The hybrid approach uses this information for grouping.
Thus, we do not end up extracting the same groups based on text mining free text fields. For
a concrete example, see Figure 4, step (1).

Lastly, if the same information can be extracted from either structured data or from free
text fields of a data set, usually structured data is preferred. In most research and industry
data sets, the quality of structured data fields is estimated to be quite high. Pre-defined
value ranges and quality control at the point of data entry lead to high quality structured
data. However, the entry of texts is free and usually no pre-defined value ranges and quality
control exist. Thus, free texts are oftentimes full of spelling mistakes, grammatical errors
and abbreviations (compare e.g., [KM16] and [ZMZ16]). If an information is present in a
structured field as well as in a free text field, we use the information from the structured
field. Consequently, we do not want to extract this redundant information from the free text
field with text mining. Thus, during preprocessing, we remove this information. E.g., in
Figure 5 we remove the word ’steering’ from all free texts in the respective group.

As we can see from Figure 5, in the hybrid approach, cluster names such as ’fail’ or ’light’
are added. After the grouping and removal step, these new cluster characteristics show
up. Thus, compared to isolated approaches, our approach increases the amount of new
information i,,.,, available in the data set (see Section 6).

158 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

S Design Decisions in the Implementation

The prototype is open source and can be retrieved from GitHub®. It is implemented in
Python, since many Python programming libraries for natural language processing exist. The
implementation is straightforward and helpful documentations are available (e.g., [BKL09]
and [Pel4]). Furthermore, all tools and libraries chosen for the implementation of the
prototype have industry-friendly licences. The prototypical implementation enables an easy
integration of, e.g., new preprocessing methods, clustering algorithms and visualizations,
as well as an easy adaptation to other languages. We designed the prototype that flexible
so that both use cases with English and German free text fields may be covered easily.
Other design decisions, such as on data types the prototype can read and preprocessing
performed, are founded on the two use cases described in more detail in Section 6. In Figure
6, a schematic illustration of the prototype to our hybrid information extraction approach is
shown. For the evaluation of the hybrid information extraction approach, we implemented a
state-of-the-art clustering prototype as a baseline and a prototype for our hybrid approach.
The two implementations are exactly the same, but for the two distinguishing processing
steps “group’ and 'remove’ (these two steps are bold-faced in Figure 6). In the following
subsections we describe the processing steps from Figure 6 in more detail and state our
implementation choices.

Input data with
free text field and For each group: Modified data

configuration — preprocess vectorize = cluster > add > and visualization

v A
f ‘ ~

tokenize normalize remove

Fig. 6: Schematic illustration of the prototype. In the two boldfaced preprocessing steps "group’ and
‘remove’, structured data is used, which makes the approach hybrid.

For reading configurations, we used ConfigObj”. In the configuration, the user needs to
state the column that contains the free texts and the column that contains the structured data
that shall be used in the grouping and removal steps. If more than one structured categorical
field is available and suitable, both may be applied to the 'removal’ step. However, our use
cases only require to select exactly one structured field for the *grouping’ step. Moreover,
the processing steps can be freely defined by the user, or alternatively the default settings
are used. With the default values, our prototype uses standard preprocessors, no synonyms
in normalization, a tf-idf vectorizer and creates 12 clusters per group. The user may adapt
these values if needed. ODBC data bases as well as CSV-formatted data sets may be read.
Therefore, we use the library PyODBC?® and a CSV-standard tool in Python®. NumPy!©
arrays represent the incoming and outgoing data.

¢ https://github.com/LinkMarco/PrototypeClustering
7 https://pypi.python.org/pypi/configobj/5.0.6
8 https://pypi.python.org/pypi/pyodbc/4.0.3

9 https://docs.python.org/3/library/csv.html

10 http://www.numpy.org/

https://pypi.python.org/pypi/configobj/5.0.6
https://pypi.python.org/pypi/pyodbc/4.0.3
https://docs.python.org/3/library/csv.html
http://www.numpy.org/

A Hybrid Information Extraction Approach Exploiting Structured Data 159

We base the grouping step on Python standard tools and SQL SELECT statements which
are invoked from Python. All following steps are subsequently executed for each group. The
free texts are grouped based on the structured data column as defined by the user in the
configuration. For a concrete example of this processing step, see step (1) in Figure 4.

The preprocessing phase is a central part in text mining, since here the features are given
by the words of the text (see, e.g., [MRSO0S8]). Table 2 shows the main steps.

The detailed settings are flexible and can be determined in the configuration. The main
library we use for natural language processing is the Natural Language Toolkit (NLTK)!!.

Tab. 2: Small example illustrating the preprocessing steps of our prototype: tokenization, normalization,
and the removal of stopwords and redundant information as determined via analysis of structured data.

Preprocessing step Sample text

Before preprocessing AIRBAGS FAILED DURING ACCIDENT, BUT CAR PARTS ARE
NOT AVAILABLE.

Tokenize [AIRBAGS] [FAILED] [DURING] [ACCIDENT] [,] [BUT] [CAR
PARTS] [ARE] [NOT] [AVAILABLE] [.]

Normalize [air bag] [fail] [during] [accident] [but] [car part] [are] [unavail]

Remove [fail] [accident] [car part] [unavail]

For tokenization, the Whitespace Tokenizer!'? or the Penn Treebank Tokenizer'3 may be
applied. In tokenization, the text is split into the smallest meaningful units such as words
and compounds. We give an example in Table 2. Note that here the compound ’car parts’,
while being separated by a whitespace, was correctly selected as one token.

Then, we normalize all tokens. We provide plenty normalization methods in the prototypical
implementation. These are optional and may be selected and adapted by the analyst for
each use case, e.g., as described in Sections 6.2 and 6.3. In the normalization process, we
may lowercase all texts. Spelling mistakes may be corrected using TextBlob!4. Furthermore,
contractions such as ’didn’t’ may be extracted. We use the multi-word expression tokenizer
from NLTK for extraction. Then, white spaces may be normalized (two or more whitespaces
are reduced to one). Moreover, we may remove urls, mail adresses, telephone numbers,
numbers, punctuation marks, currency signs and accents using tools from Textacy'. Finally,
we may stem the tokens, i.e., we delete affixes with the goal of normalizing and thereby
grouping the tokens. For stemming, we apply the Porter Stemmer!” from NLTK. Additionally,
different expressions which have the same meaning (=synonyms) may be consolidated. We

W http://www.nltk.org/

12 http://www.nltk.org/_modules/nltk/tokenize/regexp.html#WhitespaceTokenizer

13 http://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankiiordTokenizer
14 https://pypi.python.org/pypi/textblob

15 http://www.nltk.org/_modules/nltk/tokenize/mwe.html#MWETokenizer

16 https://pypi.python.org/pypi/textacy

17 http://www.nltk.org/_modules/nltk/stem/porter.html#PorterStemmer

http://www.nltk.org/
http://www.nltk.org/_modules/nltk/tokenize/regexp.html#WhitespaceTokenizer
http://www.nltk.org/_modules/nltk/tokenize/treebank.html#TreebankWordTokenizer
https://pypi.python.org/pypi/textblob
http://www.nltk.org/_modules/nltk/tokenize/mwe.html#MWETokenizer
https://pypi.python.org/pypi/textacy
http://www.nltk.org/_modules/nltk/stem/porter.html#PorterStemmer

160 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

implemented the synonym consolidation based on standard tools in Python. In the small
example in Table 2, we lowercase all words. Then we normalize "NOT AVAILABLE’ to its
synonym "unavailable’. Finally we stem the tokens, which e.g., transforms ’unavailable’ to
“unavail’ and failed’ to ’fail .

We base the removal step on the Word List Corpus Reader!® in NLTK. In this step, we
remove stopwords. Stopwords are words that do not bear interesting information, but merely
are present in the texts for grammatical reasons. In Table 2, during, but and are were
identified as stopwords. Additionally we remove the information already present in the
structured data column specified by the user. In our prototypical implementation, we add the
string from the categorical structured field to the stopword list. Since these structured values
usually are words in their base form, they match with the corresponding word occurences in
the stemmed free text fields. Depending on the use case and data set, further resolutions of
synonyms and abbreviations need to be added, which are also supported by the prototype.
For a concrete example of the ‘remove’ processing step, see Figure 5 step (2). In the small
example in Table 2, the word ’air bag’ was additionally removed.

We use the machine learning library Scikit-learn!® for vectorizing and clustering the free
text fields. Vectorization means building a representation for each document that notes which
words are present in the document and how these shall be weighted. The vectorizer can
use two different weighting schemes: Either plain term frequencies (tf) or term frequencies
times inverse document frequency (tf-idf). Tf-idf is a weighting scheme often used in
information retrieval [MRSO08], which leads to a proper baseline clustering prototype. Here,
terms which are very frequent in the complete free text collection are downweighted and
rare ones are upweighted. Thus, much redundant information is yet downweighted by means
of the state-of-the-art weighting scheme. Thus, the state-of-the-art approach already extracts
much new information and is a strong baseline. As we will show in Section 6, i, still
is higher for the hybrid information extraction approach than for that baseline. Several
clustering algorithms are implemented in Scikit-learn. For it’s popularity and robustness,
we chose the k-means algorithm for the prototype. This algorithm is a hard partitioning
clustering algorithm, which means that each free text may only be put into exactly one of the
clusters built. K-means is implemented following Lloyd’s algorithm [L106]. We use NumPy
for array representations and calculations in Scikit-learn. Thus, vectorization and clustering
is fast. The prototype is built so that it is possible to calculate and compare iy, in the
evaluation of the core concept. While we employ a robust and state-of-the-art clustering
algorithm in the prototype, the concept is independent of the implementation chosen. Since
the clustering step in our prototype is based on the Scikit-learn library, it is easy to add
other clustering algorithms if needed.

Finally, a new column is added to the original data set. For each data instance it contains
the name of the cluster to which the data instance belongs. The cluster name is based on the
most frequent word in the cluster. This processing step uses NumPy arrays and SQL.

18 http://www.nltk.org/_modules/nltk/corpus/reader/wordlist.html
19 http://scikit-learn.org/stable/

http://www.nltk.org/_modules/nltk/corpus/reader/wordlist.html
http://scikit-learn.org/stable/

A Hybrid Information Extraction Approach Exploiting Structured Data 161

Visualizations are optional. We implemented them using Matplotlib2°. The clusters as well
as cluster quality metrics such as the silhouette coefficient may be visualized.

6 Evaluation of the Hybrid Information Extraction Approach

In the following subsections, we give details on two data sets from the product life cycle
and explain how we apply the prototype to them. Furthermore, we compare the results of
the hybrid approach with the results from isolated approaches. In Figure 1 these results are
illustrated as R;-R3, where R| is the result of an isolated approach on structured data, R; is
the result of an isolated approach on unstructured data, and Rj3 is the result of our hybrid
approach. For easy reference, we will denote the prototypes used in the experiments by
R1-R; respectively. In the following we define the three prototypes tested:

. R;: The isolated approach on structured data is based on a simple SQL-query
which we run on the databases. It is exemplified for the categorical structured data
field ’component’ in the NHTSA data set in the following SQL statement?!. It simply
groups the data for the structured data field ’component’, counts the lines, and orders
the result in descending order:

SELECT component, count(*) FROM nhtsa_table
GROUP BY component ORDER BY count(*) DESC;

. R»: We base the implementation of the isolated approach on unstructured data on
the prototype described in Section 5. In fact, it is exactly the same, but the grouping
as well as the removal of information from free texts based on the structured data field
are omitted. Standard stopwords such as and, the, it are still removed. This ensures
that the effect of the steps special to the hybrid approach can be viewed in isolation.

. R3: We described the implementation of the hybrid information extraction prototype
in the previous section. It is adapted to the two use cases, i.e., as described below
tailored configurations such as synonyms and preprocessors are defined.

By applying both R, and R3 to the data sets, we can compare a state-of-the-art baseline
clustering approach (R;) with the very same approach plus the two distinguishing steps
"grouping’ and ‘removing’(R3). Both R| and R; are oriented on the components, i.e., air bag,
steering, power train, whereas Rz mostly is oriented on issues, i.e., fail, noise, (unintended)
acceleration, unavailable (car parts). In the presentation of our detailed evaluation results, we
thus show for comparison the results R; representing component-based and Rj3 representing
issue-based results. Moreover, we report the difference between the three approaches in
terms of the amount of new information i,,,, (as defined in Formula 1 in Section 1) and
discuss the resulting clusters.

20 http://matplotlib.org/
21 Note: the ’component’ column is named ’compdesc’ in the original NHTSA data set.

http://matplotlib.org/

162 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

6.1 Data Sets

To evaluate the prototype, we apply it to two data sets. The first one is a freely accessible data
set from the National Highway Traffic Safety Administration (NHTSA) in the United States
of America. Since the data set?? as well as our prototype are freely accessible, all evaluation
results with respect to the NHTSA data set are reproducible. The NHTSA complaint data
set currently contains more than 1.3 million reports on incidents with cars.

The second data set used for illustration of our prototype comes from an industry partner in
Germany. It contains 153k entries, comprises information on downtimes in a production
line and contains German free text information. On that line, smaller, but complex parts of
a car are manufactured. This data set allows us to see how the prototype may be applied to a
use case in production. It contains structured information on the downtimes, such as error
codes and the duration of a downtime in seconds. Furthermore, information on the reasons
for downtimes and the actions that were taken to put the production line running again are
noted in a free text field. The workers can fill the free text field via text entry into a tablet,
directly on the shop floor. The text entries are in German and quite short (4.1 words per
entry in average) and full of spelling mistakes and domain-specific abbreviations, which
brings special challenges with respect to information extraction.

6.2 Data Analysis of the NHTSA Data Set

To apply the prototype resulting in R3 to the NHTSA data set, at least the column that
contains the structured field and the column which contains the free text field need to be
given. We use the structured field with the affected car component in the grouping and
removal steps. We stick with the default settings (see Section 5), but chose to add some
synonyms and context synonyms. For example, all occurences of 'not’ or ’failed’ and
’deploy’ with no more than 3 words in between are normalized to "not deploy’. Thereby,
different ways of expressing the same concept are normalized to one term. The added
synonym consolidations help in building semantically reasonable clusters. In this use case
they have no influence on the "removal’ step of our core method. From this hybrid prototype
adapted to the use case, the isolated prototype for R, is deduced. Both approaches are the
same but for the grouping and removing steps and generate the same number of clusters (12
per group). R is computed as defined above.

In the first analysis, we focus on how an isolated approach on structured data only (resulting
in R;) and the hybrid approach (resulting in R3) differ. In Figure 7, we show the five most
frequent car components (R, left) and cluster terms (R3, right). For easier readability and
comprehensibility, we name clusters by the most frequent word in that cluster in the base form.
From the structured data, we extract the information on the most frequent car components
affected. E.g., the electrical system, air bags, power trains of automatic transmissions,

22 NHTSA complaints data set: https://www-odi.nhtsa.dot.gov/downloads/

A Hybrid Information Extraction Approach Exploiting Structured Data 163

steering and power train. Using the hybrid approach (R3), additional information can be
extracted: We already know from structured data that problems with transmission are
frequent. But we did not know that many complaints are about problems with noise,
acceleration, unavailable (car parts) and problems where the car stalls. Accelerating the
supply with car parts needed due to a recall (cluster "unavailable’) and investigating problems,
where the car stalls (cluster ’stall’) or accelerates (cluster ’acceleration’) might help in
preventing car crashes. The result Rz completes the information already available. The user
can use both in his analysis: structured as well as generated cluster information. In Table 3
we also note both, information from R3 and R; (the latter is noted in brackets following the
free text samples).

POWER TRAIN stall
STEERING [unavailable
POWER TRAIN:AUTOMATIC — Jerati
TRANSMISSION acceleration
ARBAGS [noise
ELECTRICALSYSTEM [transmission
0 20000 40000 60000 80000 0 5000 10000 15000 20000 25000 30000 35000 40000

Fig. 7: Most frequent car problems based on an isolated analysis of structured data only (Ry, left) and
on the hybrid analysis (R3, right), all based on the NHTSA data source.

Tab. 3: Concrete examples of NHTSA complaints for most frequent clusters together with structured
information as noted in the categorical field ’component’ given in parenthesis

Cluster Sample complaints

stall VEHICLE STALLED DUE TO AN ELECTRICAL PROB-
LEM.(component’: ’electrical system’); ENGINE STALLS WHEN
APPROACHING A STOP. ("component’: *power train’)

unavailable THE PART TO DO THE REPAIR WAS UNAVAILABLE. (...) ("compo-
nent’: air bag’); (...) PARTS FOR RECALL IS NOT AVAILABLE SINCE
REQUESTING (4) WEEKS AGO. (..) Ccomponent’: child seat’)

acceleration VEHICLE ACCELERATED BY ITSELF (...) (component’: ’vehicle speed
control’); THE VEHICLE IS NOT ACCELERATING PROPERLY. (...)
(’component’: "power train:automatic transmission’)

noise IT MAKES A LOUD NOISE AND NO 1 KNOW WHAT IT IS (’component’:
“electrical system’);WHINING NOISE WHEN TURNING STEERING
WHEEL. (...) Ccomponent’: ’steering’)

transmission TRANSMISSION FAILURE AT 105,000 MILES (...)(’component’: ’power
train:automatic transmission’)

In a last experiment with the NHTSA data, we want to check how R;-Rj3 differ in terms
of i,¢y (see Formula 1 in Section 1). In R; no new information which goes beyond the
structured information may be gathered, thus i,.,, = 0. We compare the degree of new
information within the 100 biggest clusters in R, and R3. We illustrate the difference between

164 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

Tab. 4: Comparison of the degree of new information i, for the three approaches R|-R3 on the
NHTSA data set

Result set inew
Ry (only structured information) 0

R, (baseline) 0.55
Rz (hybrid approach) 0.98

R1-R3 with respect to this measure in Table 4. Here we see that R3 contains significantly
more new information than R;. Also see the results already described in Section 3. The
new information might be crucial for manufacturers, e.g., to get better customer satisfaction.
Thus, we were able to confirm and improve the results of Ghazizadeh et al. [GML14], who
report half of the cluster names to correspond to vehicle components, which corresponds to
an i, value of 0.5.

6.3 Data Analysis of the Industry Data Set

For a second evaluation, we apply the prototypes to an industry data set with a German free
text field. It contains information on causes and actions related to machine downtimes. We
use a structured field with an error code description which indicates the group of errors
of a downtime on the production line for grouping. The possible choices for filling the
structured data field do not cover all types of errors and reasons for downtimes that may
occur in reality. More choices are indicated in a free text field and may be deduced by our
hybrid information extraction method, only.

To apply our prototype resulting in Rz to the industry data set, details in preprocessing
need to be changed in the configuration file due to German text: a German standard
stopword list (from NLTK, see Section 5) and a German stemmer?3 need to be specified. We
normalize some spelling mistakes and verbalizations and add a few synonyms and context
synonyms. For example, if the german words ’strom’ and ’leerlaufstrom’ (both terms are on
power/electricity) are mentioned near "hoch’ (english *high’) the main word is substituted
by ’strom_hoch’(in english "power_high’). Some of the added synonyms help ensure a good
recall of the 'removal’ step. Also, encoded umlauts such as "ae’ and "ue’ are normalized to
4 and *U’ respectively. After adapting the hybrid prototype to the use case, R, is deduced
from it. Both approaches yield the same number of clusters and only differ in terms of the
two distinguishing steps ’group’ and ‘remove’. K in k-means is set as described above for the
NHTSA data. For Ry, the data is grouped by error code description with a SQL statement
similar to the one described in the introduction of this section. For reasons of confidentiality,
we use high-level abstractions of the German definitions. We furthermore translated them
to English for the examples given in this work.

23 e.g., http://www.nltk.org/_modules/nltk/stem/snowball.html#GermanStemmer

http://www.nltk.org/_modules/nltk/stem/snowball.html#GermanStemmer

A Hybrid Information Extraction Approach Exploiting Structured Data 165

parameter deviation

change calibration [l
repeated checks

change tool [l
upper part of product

mounting processes [N
faulty bought-in parts [N lower part of product
miscellaneous I checks TN
0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000

Fig. 8: Most frequent reasons for downtimes based on the structured data field containing an error
code (Ry, left) and based on the hybrid approach (R3, right), all based on the industry partner data
source.

Finally, we compare the results of an isolated approach on structured data only (R;) with
the results of the hybrid approach (R3). Using an isolated approach on structured data, the
reasons for downtimes may be analyzed using the structured field with an error code and
a table that defines these error codes. Following the hybrid approach, many fine-grained
clusters are gained that represent new information. The results are illustrated in Figure 8. We
see that the structured information on errors on the production line are very coarse-grained:
problems due to faulty bought-in parts, mounting processes in general, change of tools
and change of calibrations often lead to downtimes. The most frequent error code hints at
’miscellaneous’ problems. This group is very big since many reasons for downtimes are
not reflected in the given structured data values. Therefore the workers on the shop floor
oftentimes chose the structured value miscellaneous’ instead.

This is not helpful for the workers on the shop floor, who want to prevent or fix problems with
downtimes of a production line. In contrast, the clusters resulting by our hybrid approach
(R3) are much more fine-grained. For example, in the big structured group "miscellaneous’,
clusters such as "problems with component parts’ and *problems with out-of-commission
machines’ were found. These give more detailed information to workers on the shop floor
and to managers of the production line. From Rz, more detailed and new information
on reasons for downtimes may be extracted: From biggest to smaller clusters, detailed
information on problems with checks, parts of the products which are produced, repeated
checks and parameter deviations that lead to downtimes in the production line are reflected
in the clusters. If this data was prepared for the shop floor workers, it might help in solving
new downtimes of the production line faster. In a feedback loop, new reasons for downtimes
in the production line may be added to the list of error codes in order to strengthen the
significance of the structured fields.

We moreover compare the degree of new information in Table 5 with the same method as
described for the NHTSA data set in the previous section (see Formula 1 in Section 1). In
this case the baseline is even stronger, due to weaker structured information available in

166 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

Tab. 5: Comparison of the degree of new information i,y for the three approaches R;-R3 and the
industry data set

Result set inew
Ry (only structured information) 0

R, (baseline) 0.78
Rz (hybrid approach) 0.99

the industry data. Still, R3 has a 0.21 higher i,.,, value than R,. The grouping step helps
to reduce the number and size of big *miscellaneous’ clusters. Special attention needs to
be payed to synonyms, spelling mistakes and abbreviations. If not adressed properly, these
issues may lead to less exploitation of the benefits of the removing step. We discussed the
different results with domain experts and found that the additional information contained in
R3 is relevant to the task of optimizing the process. Also, from the point of view of domain
experts, the hybrid information extraction method has future potential: Before a new shift on
the production line begins, a summary of current insights may be presented to the shop floor
workers. Moreover, new staff could be assisted by a presentation of aggregated insights.

7 Conclusion and Future Work

We suggested a hybrid approach to the extraction of information from free text fields which
yields more new information i,.,, from data with structured data fields and unstructured free
text fields. The approach is based on natural language processing and k-means clustering
and improves the results of two baseline isolated approaches by employing analytical
results from structured data within the text analysis process. First, we group data based
on a structured data field. Then, we preprocess data, while also redundant information,
as determined via a structured data field, is removed. Then, data is clustered and a new
column containing the cluster name is added to the data set. In this paper, we describe the
concept and implementation of our approach for hybrid information extraction and discuss
relevant design considerations. We based the prototype for the two baselines as well as the
hybrid information extraction approach on free, open-source tools. The prototype is freely
available on GitHub?4. The prototype for R; can be deviated from it and R; can be gathered
by means of a SQL-query as shown in Section 6. Finally we evaluated our approach with
two example data sets with German and English free text fields. While the data set from
production is confidential, the NHTSA data set may be downloaded?> and thus the results
presented with respect to this use case are reproducible. We compared our approach to
baseline isolated approaches on structured or unstructured data. We showed that isolated
approaches to free text yield much redundant information already available in structured

24 https://github.com/LinkMarco/PrototypeClustering
25 https://www-odi.nhtsa.dot.gov/downloads/

A Hybrid Information Extraction Approach Exploiting Structured Data 167

data. The hybrid approach impedes this and yields more new information. For the two use
cases, the degree of new information in Rj is significantly higher than in R;.

In future work, we integrate our hybrid information extraction approach into a framework of
methods for measuring and improving data quality of product lifecycle data. Then, we will
apply the concept to further information extraction approaches. In future work, an efficient
handling of big data may be enabled by transferring the prototype into text databases
(e.g., [KLA15]). Moreover, we will address issues we encountered in analyzing production
data such as synonyms, spelling mistakes and abbreviations. Furthermore, we will employ
additional evaluation metrics, e.g., based on entropy.

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for financial
support of this project as part of the Graduate School of Excellence advanced Manufacturing
Engineering (GSaME) at the University of Stuttgart. Moreover, we thank Marco Link for
crucial implementation work.

References

[BKLO9] Bird, Steven; Klein, Ewan; Loper, Edward: Natural Language Processing with Python.
O’Reilly Media, 2009.

[Br08] Brooks, Benjamin: Shifting the focus of strategic occupational injury prevention: Mining
free-text, workers compensation claims data. Safety Science, 46(1):1-21, 2008.

[Cel5] Ce Zhang: DeepDive: A Data Management System for Automatic Knowledge Base
Construction. PhD thesis, University of Wisconsin-Madison, 2015.

[CH14] Carter, B.; Hofmann, M.: An analysis into using unstructured non-expert text in the illicit
drug domain. In: 2014 IEEE International Advance Computing Conference (IACC). pp.
651-657, 2014.

[CRB11] Chougule, Rahul; Rajpathak, Dnyanesh; Bandyopadhyay, Pulak: An integrated framework
for effective service and repair in the automotive domain: An application of association
mining and case-based-reasoning. Computers in Industry, 62(7):742-754, 2011.

[FKS06] Forman, George; Kirshenbaum, Evan; Suermondt, Jaap: Pragmatic Text Mining: Minimiz-
ing Human Effort to Quantify Many Issues in Call Logs. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’06,
ACM, New York, NY, USA, pp. 852-861, 2006.

[Ga05] Gamon, Michael; Aue, Anthony; Corston-Oliver, Simon; Ringger, Eric: Pulse: Mining
Customer Opinions from Free Text. In: Proceedings of the 6th International Conference
on Advances in Intelligent Data Analysis. IDA’05, Springer-Verlag, Berlin, Heidelberg, pp.
121-132, 2005.

168 Cornelia Kiefer, Peter Reimann, Bernhard Mitschang

[GML14] Ghazizadeh, Mahtab; McDonald, Anthony D.; Lee, John D.: Text Mining to Decipher Free-

[GSB14]

[HW96]

[KLA15]

[KM16]

[L106]

[MRS08]

[Pel4]

[SBPO6]

[Ta00]

[XZZ08]

[ZM16]

[ZMZ16]

Response Consumer Complaints: Insights From the NHTSA Vehicle Owner’s Complaint
Database. Human Factors The Journal of the Human Factors and Ergonomics Society, (56,
6):1189-1203, 2014.

Gubanov, M.; Stonebraker, M.; Bruckner, D., eds. Text and structured data fusion in data
tamer at scale: 2014 IEEE 30th International Conference on Data Engineering, 2014.

Hogan, W. R.; Wagner, M. M.: Free-text fields change the meaning of coded data.
Proceedings of the AMIA Annual Fall Symposium, pp. 517-521, 1996.

Kilias, Torsten; Loser, Alexander; Andritsos, Periklis: INDREX: In-database relation
extraction. Information Systems, 53:124-144, 2015.

Kassner, Laura; Mitschang, Bernhard: Exploring Text Classification for Messy Data: An
Industry Use Case for Domain-Specific Analytics. In: Advances in Database Technol-
ogy - EDBT 2016, 19th International Conference on Extending Database Technology,
Proceedings. OpenProceedings.org, pp. 491-502, 2016.

Lloyd, S.: Least Squares Quantization in PCM. IEEE Trans. Inf. Theor., 28(2):129-137,
2006.

Manning, Christopher D.; Raghavan, Prabhakar; Schiitze, Hinrich: Introduction to infor-
mation retrieval. Cambridge University Press, New York, 2008.

Perkins, Jacob: Python 3 text processing with NLTK 3 cookbook: Over 80 practical
recipes on natural language processing techniques using Python’s NLTK 3.0. Packt Pub.,
Birmingham, UK, 2014.

Silva, E. F. A.; Barros, F. A.; Prudencio, R. B. C., eds. A Hybrid Machine Learning
Approach for Information Extraction: 2006 Sixth International Conference on Hybrid
Intelligent Systems (HIS’06), 2006.

Tan, Pang-Ning; Blau, Hannah; Harp, Steve; Goldman, Robert: Textual Data Mining of
Service Center Call Records. In: Proceedings of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD *00, ACM, New York, NY,
USA, pp. 417-423, 2000.

Xiao, Ji-Yi; Zhu, Dao-Hui; Zou, La-Mei, eds. A hybrid approach for web information
extraction: 2008 International Conference on Machine Learning and Cybernetics, volume 3,
2008.

Zhai, ChengXiang; Massung, Sean: Text Data Management and Analysis: A Practical
Introduction to Information Retrieval and Text Mining. ACM, New York, NY, USA, 2016.

Zhang, Yuhao; Mao, Wenji; Zeng, Daniel: A Non-Parametric Topic Model for Short Texts
Incorporating Word Coherence Knowledge. In: Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. CIKM *16, ACM, New York,
NY, USA, pp. 2017-2020, 2016.

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 169

Perceptual Relational Attributes: Navigating and Discovering
Shared Perspectives from User-Generated Reviews

Manuel Valle Torre! Mengmeng Ye Christoph Lofi?

Abstract: Effectively modelling and querying experience items like movies, books, or games in
databases is challenging because these items are better described by their resulting user experience
or perceived properties than by factual attributes. However, such information is often subjective,
disputed, or unclear. Thus, social judgments like comments, reviews, discussions, or ratings have
become a ubiquitous component of most Web applications dealing with such items, especially in
the e-commerce domain. However, they usually do not play major role in the query process, and are
typically just shown to the user. In this paper, we will discuss how to use unstructured user reviews
to build a structured semantic representation of database items such that these perceptual attributes
are (at least implicitly) represented and usable for navigational queries. Especially, we argue that
a central challenge when extracting perceptual attributes from social judgments is respecting the
subjectivity of expressed opinions. We claim that no representation consisting of only a single tuple
will be sufficient. Instead, such systems should aim at discovering shared perspectives, representing
dominant perceptions and opinions, and exploiting those perspectives for query processing.

Keywords: Perceptual Attributes; Modelling; User-Generated Attribute Values; Query-By-Example
Navigation

1 Introduction

Social judgments like comments, reviews, discussions, or ratings have become an ubiquitous
component of most Web applications, especially in the e-commerce domain. Now, a central
challenge is using these judgments to improve the user experience by offering new query
paradigms. Recommender systems have already demonstrated how ratings can be effectively
used towards that end, providing users with proactive guidance within large item databases.

In this paper, we will discuss how to use unstructured reviews to build a structured semantic
representation of such items, enabling the implementation of user-driven queries. Thus, we
address one of the central challenges of Big Data systems: making sense of huge collections
of unstructured user feedback. More specifically, we discuss the challenge of building
structured, but latent representations of “experience items” stored in a relational database
(like movies, books, music, games, but also restaurants or hotels) from unstructured user

I'tu Delft, Web Information Systems, Van Mourik Broekmanweg 6, 2628 XE Delft, Netherlands; m.valletorre @
tudelft.nl
2 TU Delft, Web Information Systems, Van Mourik Broekmanweg 6, 2628 XE Delft, Netherlands; c.lofi @tudelft.nl

©@@®®@ doi:10.18420/btw2019-11

https://creativecommons.org/licenses/by-nc/3.0/
m.valletorre@tudelft.nl
m.valletorre@tudelft.nl
c.lofi@tudelft.nl
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-11

170 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

feedback. Such representations should encode the consensual perception of an item from
the point of view of a large general user base. Consequently, this information can then be
exploited for allowing semantically richer queries. In the following, we will use movies as a
use case. However, the described techniques can easily be transferred to any other domain
which has user ratings or reviews available.

While there have been previous works also aiming at representing items in a database based
on social judgments (e.g., [LW15], [LN14]), we address one major yet unresolved problem:
user judgments are inherently subjective as they represent a user’s perception. While
rating-based systems are widely used, semantic quality quickly deteriorates when richer
information sources like reviews are considered; they are less in quantity but richer in content
and thus can express a wider variety of opinion. Furthermore, mining reviews is harder due
to the complexity of natural language. Here, aspect-oriented sentiment analysis [YLT17] or
document-embeddings [LW 15] have been used to create structured representations which
then later can be used for database query processing. However, the commonly chosen
approach of combining the resulting representations into a single tuple (e.g., by averaging the
document embeddings) is often not meaningful. Considering an example case of the movie
“Twilight” (2008), typical reviews might express that the movie is a “beautiful romance full
of alluring characters” or “an overall stupid movie and a disgrace to the vampire genre”.
Other reviews might even be unrelated to the item itself, e.g. “my DVD was damaged on
arrival, bad seller”. Clearly, a meaningful representation of the movie should incorporate
all its relevant points of views, thus the aggregation of several user judgments has to be
performed carefully. This problem is further aggravated by the current trend towards opinion
polarization [MTT17]: publicly stated user opinions for example in reviews or comments
are increasingly extreme, making it even more relevant than ever to respect different points
of view when representing items.

Therefore, in this paper, we propose to represent each experience item in a database using
multiple shared perceptual perspectives, with each perspective representing one major
consensual opinion aggregated from multiple user judgments. Our contributions are:

. We present a large-scale modelling experiment outlining some of the challenges when
modelling perceptual attributes

. We present the foundations of shared perspectives for experience items

. We provide an overview of the design space of different techniques and methods
available to obtain and process such perspectives

. We introduce an adapted variant of the query-by-example paradigm intended to
interact and query multiple shared perspectives

. We present our prototype implementation of a system using shared perspectives, and
give insights into its query processing performance using simulations

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 171

. We conduct and present a user study, giving insights into the usefulness and semantic
representativeness of the perspectives in our prototype system

. Based on the results of this study, we identify shortcomings and challenges with
shared perspectives, and propose additional techniques to address some of them

2 Towards Shared Perspectives and Modelling Perceptual Properties

In the precursor work of this paper [LW15], we already explored preliminary concepts and
implementations for encoding social judgments for capturing experience items like movies,
books, etc. in relational databases. We used an e-commerce scenario where users can
browse for experience items. This type of scenario is a prime application for user-generated
judgments: user-friendly interaction with experience items is notoriously difficult, as there
is an overwhelming number of those items easily available. Some of them are vastly popular
and easily accessible mainstream items, but most of them are relatively unknown long tail
products which are hard to discover without suitable support. Even more, the subjective
user experience those products will entail (which, for most people, is the deciding factor for
buying or consuming the product) is difficult to describe by typically available meta-data like
production year, actor names, or even rough genre labels. Due to this problem, web services
dealing with experience products enthusiastically embraced techniques for motivating the
creation of user-generated judgments in the form of ratings, comments or reviews. In its
most naive (but very common) implementation, rating and review data are simply displayed
to users without any additional processing (e.g., as seen in most current video streaming or
shopping platforms). Querying and discovering items still relies on traditional SQL-style
queries and categorizing based on non-perceptual meta-data (e.g., year, actor list, genre
label, etc.). Manually reading these user judgments may help potential new customers to
decide if they will like or dislike a certain item, but it does not really help them to discover
new items beyond their expertise (i.e., manually reading user judgments works fine if a user
knows what she is looking for, but has not yet come to a final buying decision). This led
to the development of recommender systems [LSY03, BKV10], which proactively predict
which items a user would enjoy. Often, this relies on collaborative filtering techniques
[LSY03] which exploit a large number of user-item ratings for predicting a user’s likely
ratings for each yet-unrated item. While collaborative filtering recommender systems have
been proven to be effective [KB11], they have only very limited query capabilities (basically,
most recommender system offer just a single static query for each user).

2.1 Modelling Perceptual Properties

For enabling semantic queries like similarity exploration or query-by-example queries
[LW15, LN14], the first step is to find semantically meaningful representations of database
items going beyond simple available structured meta-data. As motivation for this work, we

172 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

argue that experience items are generally better characterized by their perceptual properties,
e.g. their mood, their style, or if there are certain plot elements present — information which
is rarely explicitly available and expensive to obtain. Furthermore, from a modelling point
of view, it is often unclear which perceived properties describe items well.

Thus, in the following we investigate the question of “How well can perceptual attributes be
modelled manually by (semi-skilled) database schema designers”. This modelling challenge
can be approached in multiple different ways, as in [TNK10] where simply the Oscar Award
categories are used (like “cinematography” “music” “costume design”) - a design decision
which might represent some movies better than others, and might not necessarily represent
how the general public would describe (and query) for movies.

99

For this paper, we conducted a modelling experiment with 180 second year university BSc
students, and asked them to create a ranked list of perceptual attributes (i.e. attributes
describing the consumption experience of a movie). The core task was “Which attributes
should be used to describe movies beyond typical structured meta-data as e.g., available in
IMDB?3.” Also, a brief motivation why they think that these attributes would be relevant
should be given. Practical limitations, like the challenge of how to obtain the values for such
attributes, or the problem that certain attributes might be subjective, were to be ignored.

Tab. 1: Modelling Experiment Example Response
Attribute Importance Explanation

Quality of Acting 5 The quality of the acting in a movie can make a
great difference in the overall quality. Believable
acting can be a great help to a movies perceived
quality.

Originality of Storyline 3 Most big movies seem to have the same storyline
with some characters changing names, they are
predictable and bore a lot of people. A lot of
people are therefore interested in movies with
original storylines

Amount of Explosions 2 A large amount of explosions will put off some
viewers while others will really appreciate them.
Quality of Scenes 3 Simply put fight scenes can differ greatly in

quality from the lameness that is Darth Vader
vs Palpatine to the awesomeness that is gypsy
danger rocket punching a giant monster in the
face. People that watch action movies want to
see people get punched in an awesome way, not
thrown over a railing for example. This can really
make or break these kinds of movies for certain
viewers.

The students all possessed basic knowledge of database modelling techniques, and conducted

3 http://www.imdb.com

http://www.imdb.com

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 173

this task as part of their database education curriculum. Students were teamed into pairs,
and performed this modelling experiment collaboratively to foster discussions and enforce
at least a minimal degree of consensus on the relevance of attributes between the two team
members. An example result created by one of the teams is shown in Table 1. That group
claims that “acting” (as in “the quality of acting”) is the most important attribute while
“storyline” or “scenes” are considered slightly less important.

The modelling teams provided between 4 and 10 attributes each, with an average of 6.5
attributes per team. An overview of all modelled attributes is shown in table 2. We manually
grouped the participants’ responses (e.g., “quality of story”, “plot”, or “story” are all grouped
into “storyline”). 90 teams participated in the experiment, and two attributes received a high
degree of consensus: 74 teams mentioned “storyline”, and 72 mentioned “acting”. Several
other attributes like “scenery”, “character”, or “directing” are only mentioned by roughly
half of the teams, and several attributes were only mentioned once (like “Disney’ishness”
describing how a much a movie feels like a Disney movie; or how friendly the movie seems

to portray animals.)

As part of the experiment’s post evaluation, several students complained that it was not
intuitive to model perceptual attributes. This also shows in the modelled attributes themselves:
beyond attributes like acting and storyline, there is little consensus between the 90 data
models created in the experiment, and for many modelled attributes it is debatable what they
mean and how important they really are. Furthermore, importance of many attributes seems
to be quite subjective. Thus, we conclude that explicitly modelling perceptual attributes is
often unfeasible. Furthermore, even if such attributes are modelled, obtaining the actual
attribute values for all modelled attributes and items in a database is far from trivial (e.g.,
[YLT17] uses aspect-oriented review mining for this with somewhat limited success). Thus,
for the remainder of this work, we opt for fully automatically generated latent perceptual
attributes as discussed in the next subsection.

. Perceptual attributes should be considered when describing experience items as they
better capture how users see or query for items than traditional structured attributes.

. Perceptual attributes are hard to model explicitly as they are often fuzzy and subjective

2.2 Latent Representation of Perceptual Properties from Reviews

Due to the challenges regarding explicit modelling and mining of perceptual attributes, we
investigate latent representations. Latent representations can be mined fully automatically
from user judgments like reviews or ratings. However, while these attributes might have a
real-world interpretation, that interpretation is typically unknown to us (for example, one
attribute might represent how scary a movie is, but this attribute will simply have a generic
name and we do not know that it indeed refers to scariness). We consider this an acceptable
price to pay for the convenience of obtaining both the data model and item attribute

174 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

Tab. 2: Modelling Experiment Most and Least Important Attributes

Aspect Sum Importance ~ Avg Importance mentions
storyline 346 4.67 74
acting 341 4.73 72
scenery 197 4.10 48
character 186 4.53 41
directing 177 4.43 40
sound 162 2.74 59
humor 160 3.01 53
originality 67 248 27
pace 49 3.06 16
cinematography 46 2.70 17
child friendliness 3 3 1
babes 2 2 1
morality 2 2 1
animal friendliness 1 1 1
Disney’ishness 1 1 1

values fully automatically. A naive way of creating a latent representation is to embed each
item in a high-dimensional vector space (therefore, such techniques are also sometimes
called “embeddings™) with usually 100-600 automatically created dimensions where each
dimension represents an (unlabeled) perceptual attribute (like scariness, funniness, quality
of special effects, or even the presence of certain plot elements like “movie has slimy
monsters” - but again, while the attributes likely do represent a real world aspect, the actual
meaning is unknown to us).

Even without explicitly labeling the attributes resulting from embeddings, latent representa-
tions can already provide tremendous benefits with respect to the user experience: They can
directly be used by most data analytic algorithms like clustering, supervised labeling, or
regressions. Also, from a user’s perspective, such representations can be used with great
effect to allow for semantic example-based navigation queries as we have shown in [LN14]
for movies, or be used to increase the ease-of-consumption of review texts [YLT17].

To obtain such latent representations for e.g., movies, early approaches like [SLB12, LN14]
relied on decomposing user-item-rating matrices using techniques not too unlike those
also used in recommender systems [Sa0l]. As the needed large user-rating corpora are
hard to obtain nowadays due to privacy concerns, our later work [LW15] relied on the
openly available reviews. Here, a very simple heuristic was used: Similar movies should
feature similar reviews, thus by embedding all user reviews into a latent space (by using
e.g., techniques like Latent Semantic Analysis [Lil2] or Document Embeddings [LB16]),
and aggregating them into a single tuple with latent attributes, an effective representation

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 175

of experience items can be created which can be used for example-based and similarity
queries. However, this heuristic showed several shortcomings as discussed next.

. Perceptual attributes can be automatically extracted in an implicit latent form, e.g.,
using review or rating mining techniques

. Latent perceptual attributes have no clear explicit semantics, but can still be effectively
used for navigational query-by-example queries

2.3 Towards Shared Perspectives

In [LW15], we relied on Amazon movie reviews to build representations of latent perceptual
properties of movies. While we could show that the resulting attributes showed mostly
comparable performance when used for a query-by-example system compared to a rating-
based latent representation, we encountered several cases of unexpected behaviors. Thus, we
manually inspected a selection of movies and their supposedly most similar titles. Here, it
turned out that there are indeed many good matches in the similarity list. However, there are
also some titles which are highly similar with respect to the latent perceptual attributes even
though the movies themselves are very different (e.g., for the movie “Terminator 2", both
“Robocop” (a good match) and “Dream Girls Private Screenings” (a surprisingly bad match)
are both considered similar). The reason for this irritating behavior seems to be that there
are many “bad” reviews. “Bad” reviews are not discussing the movie itself, but other issues
and do therefore not contribute to a meaningful representation. Typical examples are “T had
to wait 5 weeks for delivery of the item! Stupid Amazon!”, “Srsly?! Package damaged on
delivery?”, “I ordered the DVD version, got the Blue Ray!”. For “Dream Girls”, reviewers
seem to be mostly concerned with the bad quality of the DVD version in comparison to
the older VHS release. A similar issue is described in several reviews of the original DVD
release of Terminator 2. Such reviews should therefore not be considered when building
latent perceptual representations, however it is not a trivial process, since cleaning noisy
web-data is a live line of research.

A second issue became apparent much later: for many movies, reviews often show very
polarizing viewpoints, and aggregating them into a single tuple represents neither point
of view well. Consider for example the teen vampire romance movie “Twilight” with the
opinions “This is the worst movie of all times, with cheesy characters, dump story line, and
really bad sparkling vampires” and “This movie is the best movie ever made, so romantic
and beautiful, the love between the lead characters is so enjoyable.” (Note that most review
for this movie follow either the first or second opinions - only few people believe that it is
just an average movie...) By combining the (high-dimensional numeric vector) embeddings
of such two highly polarizing opinions, the resulting combined embedding would likely not
be useful. Therefore, it is essential to store strong opinions independently to each other and
be considerate when aggregating judgments of users on perceptual properties.

176 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

However, we argue that while perceptual properties expressed by users are highly subjective,
they are not necessarily unique and there is often a smaller set of shared point of views (or
perspectives) when perceiving items: For example, out of 400 reviews for the drama “The
Green Mile” in our Amazon dataset, essentially 180 express some variation of * this is a
beautiful and touching movie, full of emotion” - while each review might be using slightly
different words, the perspective is the same. Another 110 agree that the movie has “great
acting and a good story that follows the book quite well”, and 80 reviews claim variants
of “it is a good movie with famous actors, it is long but worth it”. The remaining reviews
usually express some isolated fringe opinions, like “it is an unrealistic fairy tale in prison”,
or “such a bad movie, Tom Hanks is so lame”, or indeed “I ordered this movie and the
package was damaged” —opinions which are typically not shared by many others.

Therefore, we propose to group similar user judgments expressing perceptual properties
into shared perspectives, and aggregate each shared perspective into one single latent repre-
sentation. Thus, shared perspectives retain major potentially conflicting and/or polarizing
opinions while still aggregating the underlying social judgments to minimize storage space
and query complexity. Then we retain only major shared perspectives and discard lesser
ones. Considering the “The Green Mile” example, this movie would then be represented by
it’s traditional meta-data like title, actors, release year, etc., and in addition with three latent
perceptual tuples representing the three major shared perspectives. This allows to perform
similarity navigation from “The Green Mile” to other movies which are perceived as equally
emotionally touching, or have equally good acting/plot following a novel. This is illustrated
in figure 1: instead of traditional QBE which only relies on a single, hidden-to-the-user,
item similarity, the users can choose to navigate along a shared perspective to discover new
items which are similar with respect to that perspective. Also, several perspectives can be
combined during query processing: “Twilight”, a teen vampire romance, is characterized
by having two very distinct and conflicting shared perspectives (see above), one deeply
embracing the movie for its romantic plot and great characters, the other perspective hating
the movie for its plot and characters. A similar situation can be found for “Warm Bodies”, a
teen zombie romance, which features nearly the same perceptions and perspectives.

. User perception are often highly opinionated, polarizing, or even contradicting. This
needs to be respected when representing items, and a single perceptual representation
of each item is usually insufficient.

° Still, there is often a smaller number of dominant perception which is consensual shared
by larger user groups. Focusing on these shared perspectives is a good compromise
for efficiently representing experience items while still respecting polarized opinions.

3 Shared Perspectives

This is the core section of this work, where the foundation and implementation of Shared
Perspectives is described.

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 177

Figure 1: Query-by-Example Step using Shared Perspectives

Shared Perspectives

Great acting with
good story from a
book

Long but worth it,
great movie w/
good actors

3.1 Foundation and Terminology

In the following, we introduce new concepts relevant for representing shared perspectives.
A database system wishing to use shared perspectives to represent a type of real-world
items I = {I}, Ip, ..., I, } has a set of factual attributes A = {Ay, ..., A, , . }. These attributes
AF represent traditional relational attributes, and we use the term factual (as opposed
to perceptual) to describe that there is at most one value for each item and attribute,
and that the attributes have been agreed upon during the schema design phase. Each
item x € I can be represented by a factual tuple xr € Dp, stored in the factual relation

Rr € DF = A; X ... X A, using those factual attributes.

In addition, there is also the set of perceptual attributes Ap = {Py, ..., P,, } with Dp =
Py X ... X Py, In this paper, we showcase a system using latent perceptual features, thus
the set Ap is not chosen by the schema designer, but is typically the result of some sort of
algorithm miner automatically mining user judgments like reviews or ratings. For example,
a document embedding algorithm will typically produce 100 to 300 such attributes. For
each item x, there is in addition to the factual tuple xr also a set of shared perspectives
Xsp = {XsPs .0 xspnx__l,} C Dp. Finally, the item x is represented by (xg, xsp). Such a
tuple is not in the first normal form (as xsp is a set). Therefore, a real-life application using
traditional relational databases without special extensions would typically realize this by
normalizing and having several relations using joins to build (xf, xsp) on the application
side.

In order to obtain the shared perspectives for an item x € I, each item x also features several
user judgments UJ, C UJ like reviews, ratings, discussions, or just explicitly provided

178 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

user feedback. The aforementioned mining algorithm miner transforms such a judgment
into perceptual tuples, i.e. miner : UJ — Dp. By applying miner to each judgment in
UJ,, the set of all perceptual tuples xp C Dp is created, i.e. when a movie has 1000
reviews from different users, xp will contain a perceptual tuple for each review. In our
implementation, we do not store x p, but only use it to discover the shared perspectives xgsp.
Discovering shared perspectives is realized by the function g&a (group and aggregate),
g&a : P(Dp) — P(Dp). This function will group all perceptual tuples, and aggregate
the bigger groups into a single tuple in order to produce the shared perspectives, i.e.
xsp = g&a(xp).

We discuss the design space for implementing the functions miner and g&a in the following
sections.

. Experience Items I can have factual Ar and perceptual attributes Ap. Perceptual
attributes of each item x can be obtained from user judgments U J, € U J using a miner
grouped into shared perspectives xsp with an appropriate algorithm xsp = g&a(xp).

. The shared perspectives of an item xsp = {xsp, ... XsP,,,,} © Dp canbe compared
to other shared perspectives of an item to find similar perspectives, and therefore
similar items.

3.2 Query-By-Example using Shared Perspectives

Shared perspectives, especially the implementation chosen in this work with latent attributes,
are hard to use with traditional SQL-style querying. Thus, we propose to use a variant of
iterative query-by-example for allowing user to interact with the item space. This type of
querying sits between SQL-style querying (where users have to specify exactly what they
are looking for), and recommendations (where users specify little to nothing, and the system
actively recommends). In [LN14], it has been shown that this type of querying works well
with users who only have a vague idea of the items they want, and QBE querying was
deemed an enjoyable and playful experience by the users in that study.

A core concept in querying is semantic similarity sim between two perceptual tuples, i.e.
sim : D, x Dp, — [0..1]. While there are several approaches towards implementing this,
we chose with a simple cosine-distance-based similarity.

The shared-perspective-enabled QBE process can be summarized as follows (also see figure
2): The user starts with an example item she likes. Then, for each shared perspective that
item has, the system will discover up to n other items which have a shared perspective which
is most similar to the current one (# is 3 in our system). Each of these items (n items per
shared perspective) are then shown to the user, and the user can select from that display
the item she likes most. Then, the process can be repeated until the user is satisfied (see
algorithm 1).

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives

179

Algorithm 1 Query on SP

1: procedure X ITEM QUERY BY EXAMPLE

2: x < UserProvidedExampleltem € |
3: while user wants to continue do
4: display — ¢
5 for each sp € xgp do
6: maxItemSim < newRelation(item, similarity)
7: for each (y € I) A (y ¢ display) do
8: maxSim < max (sim(sp, ysp))
9: maxItemSim.add(y, maxSim)
10: display.add(topy(maxItemSim))
11: show(display)
12: x « UserSelectedltem € display
13: end while
Figure 2: Query-by-Example: Shared Perspectives and Displays
display
do
m=2
L]
n=3 1= Ysp2 y
D XSP1 Ordered tuples P =ZE
sPy Similar to xgpq uc display
o MO o = B :
[l . o = Vsp2 mg i
N SP, Ordered tuples Ll mg
user U item x Similar to xgpy v ::
(@) XsPg _ . L] s
sp ;_ SP1 r . H
3 53—
Ordered tuples 163 =E oo EE
Similar to Xgp3 t user U Ll
. Each item has multiple shared perspectives using perceptual attributes. Shared
perspectives are created by representing user judgments as perceptual tuples which
are then grouped and aggregated by group.
. For querying, a variant of Query-By-Example can be used. After selecting a start

example, we show the user several items which are similar with respect to the different
shared perspective of the start item. Then, the user can select a new item she likes

and the process starts anew until the user is satisfied.

4 Implementation Design Space

In this section, we outline some areas of the design space for implementing shared
perspectives into an information system, and explain the choices of our prototype system.

180 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

4.1 Dataset

Underlying our prototype is an existing dataset of movie reviews crawled from Amazon
[Mc15]. We only considered movies that have at least 100 reviews, and use maximum 300
(randomly selected) reviews per movie. We also discard reviews with less than 25 words
as they are commonly uninformative, This results in a dataset consisting of around 375K
movie reviews, for 2,041 movies overall.

4.2 Extracting Perceptual Attributes

In this section, we discuss the design choices for implementing the aforementioned function
miner which translates reviews into perceptual attributes. In a good review, a user will take
the time to briefly summarize the content of an item, and then expresses her feelings and
opinions towards it - the task for miner is to represent these opinions in such a way that the
similarity measures used by the QBE process work well.

In an earlier prototype we focused on explicitly modelling perceptual attributes and using
aspect-oriented opinion mining to extract perceptual tuples [YLT17]. However, this had a
considerable manual overhead and did result into only few usable attributes which could
be extracted reliably. Thus, in this work, we focus on extracting a fixed number of latent
perceptual attributes as in [LW15]. In [LW15] we discussed the advantages of different
implementation techniques like LSA [DLO05] or LDA [BNJO3]. However, in the last few
years there has been a surge of approaches proposing to represent the semantics of text
documents using neural language models. A prominent example is word2vec, representing
the semantics of words as a fixed-length vector [Mil3], and the later version doc2vec
which represents documents as vectors [LM14]. Studies in [LB16] suggest that the semantic
performance of doc2vec in typical document tasks like clustering or retrieval seems to
be quite good, outperforming other approaches based on bag-of-words, word vectors, or
LSA/LDA. This has also been shown for the special case of reviews [LM14].

In our prototype, we used the document embedding implementation of doc2vec provided by
Gensim 4, using distributed bag-of-words representation (dbow). Typically, such document
embeddings need to be trained on a large corpus before they can be used. In scenarios where
only a smaller amount of text is available, the solution is often to rely on models pre-trained
on Wikipedia or Google News. However, as we had a large review corpus available [Mc15],
we trained on all Amazon reviews without excluding anything.

The parameters for training and the embeddings were:

. Vectors are kept at 100 dimensions. Typically, 100 to 300 dimensions is considered
good for document similarity tasks [LB16].

4 https://github.com/piskvorky/gensim/

https://github.com/piskvorky/gensim/

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 181

. The training window is 10 since it showed good performance with documents of
similar size (reviews)

o Frequent word subsampling seems to decrease sentiment-prediction accuracy, so it is
not applied
. We do not consider any words which are mentioned only once in the whole corpus

. The learning rate is alpha = 0.025 and is kept fixed

Example: The Green Mile review

“Ok, so it did not deserve best picture. It was still excellent. It has great performances in it.
Particularly the guy who never was very famous Michael Jeter or whatever his name is. I
love the visuals. I cried at the end. Michael Clarke Duncan is great."”

— Perceptual Tuple: (-0.640138, 0.422624, .., -0.0350407, 0.192102)

. The miner selected for this work is doc2vec, applied to amazon movie reviews, with
100 dimensions.

. Hyper-parameter values were chosen in line with the recommendations of the authors
of doc2vec and other implementations working with similar documents.

4.3 Aggregating Shared Perspectives

As part of the creation process of shared perspectives, individual perceptual tuples repre-
senting single reviews need to be aggregated and summarized to implement the function
g&a. We opted for spherical k-medoids clustering to group perceptual tuples for an item
[DMO1]. Alternatively, we also considered HDBSCAN, but this did not notable improve the
results [Cal5]. The ‘elbow method’ was applied to select the best number of clusters. After
clustering, we only retain up to 3 clusters. This is a simplifying design choice to keep the
user interface easy and accessible. However, a quick inspection showed that most reviews
would only show 2-3 clusters anyway (typically, this is reviews from people who hate the
movie, reviews from people who love it, and balanced views). Thus this limitation will
only sacrifice semantics in case of very diverse opinions. The shared perspective tuple is
representing a cluster is chosen using the medoids. We prefer this solution over k-means,
which would create an artificial shared perspective tuple which does not relate to a real user
review.

. Spherical k-clustering was implemented as the choice of aggregating or g&a for this
work.
. k=3 was decided since manual inspection of the ’elbow method’ for several movies

showed that most reviews would only show 2-3 clusters, plus it simplifies design and
user interface for the evaluation in Section 5.3.

182 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

5 Evaluation

We evaluated our system in two ways: the first one is a query simulation akin to those
performed in [LN14]. Here, the core idea is that we assume the existence of a hypothetical
“target object” the user is searching for, and simulate the user interactions leading to that
item. While this simulation is artificial and does not resemble a real-life user interaction, it
still gives insights into the effectiveness of some design decisions. The second evaluation
is using real users, and having them interact with the system to evaluate the perceived
usefulness and semantic quality of the shown shared perspectives.

5.1 Evaluation: QBE User Simulation

The general effectiveness of QBE using perceptual attributes without shared perspectives
has been shown in [LN14, LW15]. Therefore, in this section we focus on the effect the
introduction of shared perspectives has on the QBE process. As a baseline, we force our
system to only consider a single perspective (i.e., use the medoid of all perceptual tuples
resulting from reviews as the only shared perspective). This resembles the setup in [LW15],
which uses only a single tuple to represent a movie. We compare this to a version of the
system in which we consider up to 3 shared perspectives.

The artificial evaluation scenario is a as follows: choose a random start example movie, and
choose a random target movie. Then perform perform query-by-example iterations choosing
always the displayed movie which is closest to the target. As an evaluation metric, we count
the number of iterations necessary to traverse from the start example to the target. We
assume that using shared perspectives, fewer iterations are needed as the display selection
has a wider semantic spread then when using only a single perspective, since SPs can help
to ‘get out’ of dense similarity neighborhoods. For instance from “The Green Mile” to
“Tinkerbell”, there is a perspective that relates them: “The Green Mile” has a “good story
that follows the book™ perspective, which leads to a display that includes “Matilda”, which
has the perspective “beautiful family movie with a message”, and the next display contains
“Tinkerbell”.

Note that this evaluation is very artificial from a semantic point of view: shared perspectives
with QBE are designed to help users who have a vague idea of the style/type/general flavor
of item they are looking for. They will not have a particular item in mind (if they had, they
could simply retrieve it using SQL). Thus, we assume that users will choose a starting
example which is in the proximity of their unclear target, and then clarify their preferences
during the query process (e.g., “I know what I am looking for as soon as I see it.”)

The basic steps for this evaluation are:

I. For the currently selected movie x, the system generates a new display with 9 movies
as described in section 3.2. When using shared perspectives, it is the 3 most similar

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 183

movies with respect to the 3 perspectives of x. This is, the 3 movies with a shared
perspective tuple with the least cosine distance to xsp,, 3 more for xsp,, and 3 for
xsp,. When not using shared perspectives, it is simply the 9 movies with least cosine
distance to the single tuple x.

2. If target movie is in display, finish. If not, select the best option (i.e., movie which is
most similar to the target) as new example movie from display

3. Repeat

Results: The average steps it takes from start to target movie for 175 different pairs of movies
is 38 when using only a single representation, and 28.03 when using shared perspectives.
Thus, shared perspectives reduce the average number of required interaction steps by roughly
30% (again, note, that in a real use case, there will be significantly fewer steps as start
movies are chosen closer to the implicit “target”). The frequency distribution of the number
of steps for this experiment is shown in Figure 3. This graph shows that by using SPs,
around 80% of pairs reach the target movie in less than 50 steps, compared to 65% with SR.
While this is an improvement, there is however also number of movie pairs for which the
simulation takes more than 175 - something that does not happen when not using shared
perspectives. This odd behavior will be investigated later in section 5.3.

Please note that these numbers seem high when compared to the best results reported
in [LN14, LW15], where the results were between 10 and 17 steps. In those works, we
employed an additional Bayesian probability user model which did not solely rely on
similarity, but also provided shortcuts to the movie which is the predicted target of the
user based on that model. Similar techniques could also be applied to shared perspectives.
However, like mentioned in those works, this is beneficial when the goal is to reach a
predefined target, which in reality is not known to user or system. Therefore in a real
application, where there is no such target, displaying items that are highly informative for
the system, like showing Terminator as similar to Finding Nemo, would be confusing to the
user.

. For evaluation, we propose a simulation with a starting and target movie to mimic the
behavior of a user.

. ‘We compare the performance of a single representation of a movie against the multiple
shared perspectives.

5.2 User Evaluation

The purpose of this user study is to obtain some insights on the quality of shared perspectives
for querying from a user’s point of view. We do not consider this an exhaustive quantitative
analysis, but rather a quicker exploration to obtain an intuition on the quality of the approach.
Especially, we are interested in how useful different perspectives are perceived, and what

184 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

601 I One Perspective
I Three Shared Perspectives

504

N
=3
!

Percentage
w
]
T

N
=3
!

104

75 100 125
Number of Steps

Figure 3: Histogram of Steps with 175 pairs

their semantics could be (remember: shared perspectives result from semantically clustering
reviews. Thus the question is: What is the commonality of the reviews which contributed to
a perspective? Is it a meaningful semantic?).

To this end, we asked seven participants to interact with the system and rate how useful
a perspective is based on the constructed QBE display. The participants include people
from 18 to 55 years old, from different countries and education levels. The setup of the
experiment is the following:

. We sent a standalone desktop application to the study’s participants

. The application implemented the QBE workflow as outlines in section 3.2, with a
display of 9 movies (3 for each shared perspective) in each iterations step.

. We showed the users the text of the medoid review which represents a perspective
(see figure 4 for a user interface example)

. Instructions for the participants were to rate for each perspective how well the shown
review snippet represents the selected movies on a 3-point scale: well represented
(score 2), somewhat represented (1), not represented well (0).

All 7 participants evaluated the same set of 7 displays. For each shared perspective thus
evaluated, we computed a “usefulness score” based on the user feedback. Here, some
perspectives got higher ratings, like for “Real Steel” which had a perspective connecting to
“The Last Starfighter” which can be summarized as “awesome sci-fi for the whole family”,
or “My Dog Skip” related to “P.S. I Love You”, “The Good Life of Timothy Green” and
“Bee Movie” because “My wife and I loved this movie. A heart warming story” with a
usefulness score of 1.5. However, even when looking at this small-scale study involving only

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 185

Figure 4: User Interface Prototype

Selected Movie Perspective 1 Perspective 2 Perspective 3
The other fantastic prison movie. (The first As always a super good mavie.We watch This is & very good movie. Tom Hanks s~
one being The Shawshank Redemption). this ane every few years.Acting i superb great as always and Michael Clark
This one & a kttle more magical and very by alin this picture with a really good Duncan is just a5 good! The movieis 8
touching, Do not miss it! story. The baok is really good too and the bit long but it's 50 good it keeps you into
movie Follows it quite well, the mevie thus you don't really mind the

time length of the fim, Hanks supervises , |
(FSRE A A P

O~ Tae Weerfionte

Official movie overview

| A supernatural take set on

| death row in a Southem

| prison, where gentle giant

| John Coffey possessas the

| mysterious power to heal

| people's aiments. When the

| celblock’s head guard, Paul

| Edgecomb, recognizes Coffey's
miraculous gift, he tries

DEEDS

GOOD

| desperately to help stave off ? 8
| the condermned man's
execution.
Select next movie below
1 -
P 3 9
thebesiman

8)5

few users and example displays, some problems became apparent: “The Good, The Bad and
The Ugly” relates to “The Towering Inferno”, “Shane” and “The Uninvited” because “The
digital restoration looks really great”. This perspective was not perceived as useful with a
score 0.5. This problem was already encountered in [LW 15]. However, in that work, such
reviews affected the whole item representation. However, when using shared perspectives, it
usually results in only one bad perspective, while typically one or two useful ones remain.
As such, this problem is less severe for shared perspectives than it was for [LW15], but still
this is an unsatisfying result.

As an additional exploration, we provided users with the option to label shared perspectives
with a few keywords. Even though we obtained only a smaller number of labels this way,
some of them were quite descriptive: all participant for example noted that the second
perspective for “The Jungle Book” represents “Disney classics”, or that the first perspective
for “The Good, the Bad and the Ugly” should be something along the lines of “great western
with very good actors”. In contrast, the first perspective in “The Green Mile” received
labels along the lines of “good acting”, or “good story” with no clear con census. Other

186 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

perspectives received no labels at all. In our future works, we will extend this preliminary
inspection with a larger scale user study to provide reliable insights into the semantics of
shared perspectives. For now, we remain confident that while not all perspective have a
discernible meaning, many actually have one.

° In addition to the simulation for evaluation, a user-study is conducted to rate the
usefulness of shared perspectives to find similar movies.

. The usefulness is for each shared perspective, and can be defined as: how good is
xs P to say that movie x is related to movie w because of wg P>, to movie y because
of ysP; and z because of zgP;.

5.3 Predicting Usefulness Scores

Motivated by the results in the last section, we tried to look into the problem of not useful
shared perspectives. The goal of this to learn from user feedback, and predict for each
perspective a usefulness score.

In a production system, this could be a continuous process where users are given the
option to down-vote a perspective as not useful, and the system is considering this feedback
when computing usefulness scores. Then, perspectives could be presented ordered by their
usefulness, or skipped all together if deemed very unuseful. Also, the calculation of all
similarities could be modified by usefulness.

We manually analyzed all shared perspectives involved in the last experiment. For those,
non-useful perspectives are closely similar to perspectives of a large number of movies. On
the other hand, useful perspectives are only similar to perspectives of a smaller number
of movies. This can be justified by the following intuition: useful perspectives should be
specific to that movie, and only few other movies should share that perspective, like being
a “heart-warming children movie” or being a “Disney classic". If a perspective (i.e., a
particular topic featured in reviews) is present in a large number of movies, it is likely not
useful. This would for example be the case for “My packaging was damaged” or “Image
quality is grainy due to HD upscale” - such sentiments can afflict any movie no matter it’s
actual qualities or content.

To capture this intuition, we calculate the Pearson Median Skewness (PMS) score, also
called Second Skewness Coefficient of a given shared perspective tuple to all other shared
perspective tuples in the database, calculating a usefulness score for that perspective based
on the difference between mean and median of PMS.

We extended the simulation experiment from section 5.1 by adjusting the similarity
calculation with usefulness scores, thus de-emphasizing unuseful similarities. This improved
the number of simulation steps from 38 when using only a single representation, to 28.03
when simply using shared perspectives, to 26.05 when using shared perspectives weighted

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 187

by usefulness. More importantly, while this average improvement is quite small, extreme
outlier cases saw improvement: e.g., one pair of movies which took 82 steps now only takes
41; and others went from 205 to 170.

This result motivates us to investigate this approach more thoroughly in our future works,
improving the way how we predict usefulness in a larger setup with more users and feedback.
Especially, the calculation of usefulness scores should relate to actual user feedback instead
of being based on intuitions as discussed in this section. In addition, modelling and
calculating the score of perspectives can be used to remove noisy reviews, a current problem
with applications of web-data.

. Leveraging the usefulness scores obtained before, a function of usefulness was
modelled to then calculate the scores of all shared perspectives in the corpus.

. The scores are then evaluated in a simulation similar to Section 5.1 with promising
results.

6 Conclusions

In this paper, we discussed the challenge of representing experience items like movies, books,
or music. For such items, perceptual attributes should be modelled, which is an inherently
difficult task during the design phase but also later when items need to be described with
respect to these properties. To underline this claim, we presented a brief study with 180
students who were asked to model perceptual properties for movies. This task was shown to
be hard, and the results between participants were not very consistent.

Therefore, in this paper we proposed the use of latent perceptual attributes which are
automatically mined from user judgments like ratings of reviews. While such latent
attributes have no explicit human-understandable semantics, they can be effectively used for
query-by-example navigational queries. However, previous works revealed a shortcoming
with this approach: typically, each item is represented using a single tuple. Especially when
highly opinionated and polarized social judgments are used to generate the latent perceptual
attributes, performance suffers as the resulting tuple represents neither viewpoint well. To
rectify this, we introduced the concept of shared perspectives, perceptual tuples representing
a dominant consensual point of view for an item. Each database item can have several shared
perspectives, thus striking a balance between aggregating social judgments for storage and
query efficiency, and still retaining conflicting opinions for better semantic representatives
and querying.

We discussed our prototype implementation for a query-by-example system exploiting
shared perspectives, and showed evaluations with synthetic queries but also a human user
study. Based on the feedback gathered during evaluations, we suggested an improvement of
our approach which takes the semantic usefulness of a perspective into account.

188 Christoph Lofi, Manuel Valle Torre, Mengmeng Ye

For future improvements, we aim at applying our approach on real-live problems in
additional domains, as for example on large music repositories. Furthermore, the QBE query
processing process can benefit from additional tuning by for example combining also the
objective structured meta-data into the similarity measures, and also including additional
user modelling to allow users to discover desired items even quicker (as e.g, in [LN14]).
Also, a large-scale user study into the semantics of shared perspectives is planned.

References

[BKV10] Bell, Robert M.; Koren, Yehuda; Volinsky, Chris: All together now: A perspective on the

[BNJO3]

[Cal5]

[DLOS]

[DMO1]

[KB11]

[LB16]

[Lil2]

[LM14]

[LN14]

[LSY03]

[LW15]

[Mcl5]

Netflix Price. CHANCE, 23(1):24-24, apr 2010.

Blei, David M; Ng, Andrew Y; Jordan, Michael I: Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3:993-1022, 2003.

Campello, Ricardo J. G. B.; Moulavi, Davoud; Zimek, Arthur; Sander, Jorg: Hierarchical
Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM
Transactions on Knowledge Discovery from Data, 10(1):1-51, 2015.

Dumais, Susan; Landauer, Thomas: Latent semantic analysis. Annual Review of Information
Science and Technology, 38(1):188-230, 2005.

Dhillon, Inderjit S.; Modha, Dharmendra S.: Concept Decompositions for Large Sparse
Text Data Using Clustering. Machine Learning, 42(1):143-175, Jan 2001.

Koren, Yehuda; Bell, Robert: Advances in Collaborative Filtering. In: Recommender
Systems Handbook, S. 145-186. 2011.

Lau, Jey Han; Baldwin, Timothy: An Empirical Evaluation of doc2vec with Practical
Insights into Document Embedding Generation. CoRR, abs/1607.0:78-86, 2016.

Liu, Chien Liang; Hsaio, Wen Hoar; Lee, Chia Hoang; Lu, Gen Chi; Jou, Emery: Movie
rating and review summarization in mobile environment. IEEE Transactions on Systems,
Man and Cybernetics Part C: Applications and Reviews, 42(3):397-407, 2012.

Le, Quoc V.; Mikolov, Tomas: Distributed Representations of Sentences and Documents. In:
31st International Conference on Machine Learning. Jgg. 32, Beijing, China, S. 1188-1196,
2014.

Lofi, Christoph; Nieke, Christian: Exploiting Perceptual Similarity: Privacy-Preserving
Cooperative Query Personalization. In: Web Information Systems Engineering — WISE
2014. Springer International Publishing, Cham, S. 340-356, 2014.

Linden, G.; Smith, B.; York, J.: Amazon.com recommendations: item-to-item collaborative
filtering. IEEE Internet Computing, 7(1):76-80, jan 2003.

Lofi, Christoph; Wille, Philipp: Exploiting social judgements in big data analytics. CEUR
Workshop Proceedings, 1458:444-455, 2015.

McAuley, J.; Targett, C.; Shi, J.; van den Hengel, A.: Image-based recommendations on
styles and substitutes. In: ACM SIGIR Conf. on Research and Development in Information
Retrieval (SIGIR). Santiago de Chile, Chile, 2015.

Perceptual Relational Attributes: Navigating and Discovering Shared Perspectives 189

[Mil3]

[MTT17]

[Sa01]

[SLB12]

[TNK10]

[YLT17]

Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S.; Dean, Jeff: Distributed
Representations of Words and Phrases and their Compositionality. Advances in Neural
Information Processing Systems, 21:3111-3119, 2013.

Matakos, Antonis; Terzi, Evimaria; Tsaparas, Panayiotis: Measuring and moderating opinion
polarization in social networks. Data Mining and Knowledge Discovery, 31(5):1480-1505,
2017.

Sarwar, Badrul; Karypis, George; Konstan, Joseph; Reidl, John: Item-based collaborative
filtering recommendation algorithms. Proceedings of the tenth international conference on
World Wide Web - WWW °01, S. 285-295, 2001.

Selke, Joachim; Lofi, Christoph; Balke, Wolf-Tilo: Pushing the boundaries of crowd-enabled
databases with query-driven schema expansion. Proceedings of the VLDB Endowment,
5(6):538-549, 2012.

Thet, Tun Thura; Na, Jin-Cheon; Khoo, Christopher SG: Aspect-based sentiment analysis
of movie reviews on discussion boards. Journal of information science, 36(6):823—-848,
2010.

Ye, Mengmeng; Lofi, Christoph; Tintarev, Nava: Memorability of Semantically Grouped
Online Reviews. In: Semantics 2017. Amsterdam, Netherlands, sep 2017.

Graphs

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 193

Graph Data Transformations in Gradoop

Matthias Kricke! Eric Peukert! Erhard Rahm!

Abstract: The analysis of graph data using graph database and distributed graph processing systems
has gained significant interest. However, relatively little effort has been devoted to preparing the graph
data for analysis, in particular to transform and integrate data from different sources. To support such
ETL processes for graph data we investigate transformation operations for property graphs managed
by the distributed platform Gradoop. We also provide initial results of a runtime evaluation of the
proposed graph data transformations.

Keywords: Graph analytics; Big Data; Graph transformations; Data integration

1 Introduction

The flexible and scalable analysis of large amounts of graph data has gained significant
interest in the last decade and is supported by graph database systems (e.g., Neo4j), graph
extensions in relational DBMS and a growing number of distributed platforms including
those based on Apache Spark and Flink like GraphX, Gelly or Gradoop [Jul7a]. A largely
neglected topic, however, is the support for ETL-like operations to prepare the graph data
for analysis which requires to transform data sources into the supported graph format, to
consolidate different graphs and to integrate them into a combined graph. As in traditional
analysis platforms these steps can be highly complex and easily require the majority of time
for graph analytics.

We have begun to investigate ETL and data integration for graph data for (extended)
property graphs managed by the distributed open-source graph processing platform Gradoop
[Jul6, Jul8]. Gradoop provides already different connectors to import data from relational
databases or CSV files into property graphs. Furthermore, we provide initial match
approaches within the FAMER system [SPR17, SPR18] to match and cluster graph vertices
derived from multiple data sources. In this paper, we propose additional Gradoop operations
to transform graphs to facilitate their integration with other graphs or to make them
better suitable for analysis. For example, a bibliographic network with publications and
their authors might have to be transformed for an easier analysis of co-authorships, e.g.,
by generating a graph with author vertices and co-authorship edges only. The proposed

! University of Leipzig, ScaDS Dresden Leipzig, Augustusplatz 10, 04109 Leipzig, Germany, {kricke, peukert,
rahm } @informatik.uni-leipzig.de

©@@®@® doi:10.18420/btw2019-12

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-12

194 Matthias Kricke, Eric Peukert, Erhard Rahm

operations are not only relevant for Gradoop but should be useful for other platforms
supporting property graphs.

We thus extend Gradoop with a number of generic transformation operations that can be used
to define advanced graph transformations on property graphs. Each graph transformation
can implicitly trigger a series of low-level graph changes (e.g. vertex/edge/property additions
and deletions) that do not need to be defined by the user. Composite transformations can
be expressed from basic ones and the transformations we propose are implemented with
Apache Flink for parallel execution and good scalability to large graphs.

After a discussion of related work, we briefly introduce Gradoop and outline the overall
data integration process. We then describe and illustrate the new operations for graph data
transformation. In Section 5, we present initial results of a runtime evaluation before we
conclude.

2 Related Work

Graph preparation and transformation have received little attention in research so far
especially with reference to integration and analysis of property graphs. On the other
hand, there have been some algebraic, declarative and imperative approaches for graph
transformation some of which have been considered for graph data processing. Algebraic
approaches have been used for model transformation in software engineering [L693, Eh97]
and more recently for the parallel execution with the vertex-centric processing model of
Pregel [KTG14, Ar10, Mal0] or Map Reduce [Bel5].

Declarative approaches rely on a declarative language like Cypher and Sparql to query,
construct and transform graphs. Cypher and Sparql provide only limited support for graph
transformation with its RETURN statement (Cypher) and CONSTRUCT statement (Sparql)
but new language proposals like Open Cypher [Gr18] and G-Core [An18] provide extensions
to express graph grouping and aggregations. BigGra [TH17] translates an SQL-like query
language called UnQL+ to the Pregel processing model in GraphX. In this approach
navigational queries and transformations are expressed as so-called structural recursions
which seem complex to be defined by a user. Some additional proposals provide a declarative
specification of graph extraction from relational databases, for example expressed with
a Datalog-based language as done in GraphGen [XKD15] or Table2Graph[Le15] that is
based on MapReduce.

Imperative methods provide languages for a step-wise definition of graph transformations. A
well known representative is Gremlin/TinkerPop [Ro15] offering a set of low-level operators
for navigation and traversal of graphs and for adding or removing vertices and edges. The
GraphBuilder tool [Jal3] mainly focuses on the construction of graphs rather than their
transformation based on the extraction of values from data sources. The support for the
actual transformation is limited to filters. GraphGen [XD17], GraphX and Gelly[KVH18]
also provide only limited support for transformation, letting the user add edges, vertices and
attributes manually for each necessary transformation.

Graph Data Transformations in Gradoop 195

Load Transform Match Integrate
(— Person N (__Person 1 Person 7 / Person Person
name: Bob name: Alice name: Bob name: Alice name: Alice

interests:
[Soccer, Music]
lives_in: Leipzig

knows*(interests: [Music]
lives_in: Leipzig

interests:

knows>|
[Soccer, Music]|
lives_in: Leipzi

interests: [Music]
&vesfin: Leipzig

interests: [Music]
&vesfin: Leipzig

similar

b
mployee (__Compan Person
name: Bob worksAt» Name: name: Bob
Sunshine Ltd company: Sunshine Ltd

Fig. 1: Sample graph data integration pipeline combining person data from a social network and a
company database.

interests: [Soccer, Music]
lives_in: Leipzig
company: Sunshine Ltd

3 Background

3.1 Graph Data Model

Gradoop [Jul6, Jul8] is based on an extended version of the property graph model
(PGM) [RN10, RN12] which is widely used in graph database systems (e.g. Neo4j) and
parallel processing systems such as Apache Spark GraphX. A property graph is a directed
multigraph supporting properties and type labels for both vertices and edges. The properties
are represented by key-value pairs (e.g. name : Bob). Properties are defined at the instance
level and no schema definition is necessary. In extension to the PGM Gradoop supports
storage and analysis of multiple property graphs called logical graphs that can also have a
label and properties. Properties can be atomic (string, numeric, boolean, etc.) or collection-
valued, e.g. lists. Gradoop also supports a number of generic operators on graphs and graph
collections (for pattern matching, subgraph filtering, etc.) that can be used within workflows
for graph analysis. The workflows can be specified in a declarative domain-specific language
called GrALa. The implementation of the Gradoop operators is built on Apache Flink to
achieve a parallel execution and scalability to large graphs.

3.2 Graph Data Integration

Figure 1 shows a typical data integration pipeline to integrate several sources into a graph for
further analysis. Initially, already existing graphs are loaded or data from different sources
such as databases or files of different formats (e.g. CSV, JSON, XML) are transformed
into property graphs. The individual graphs may then have to be transformed to achieve a
similar graph structuring and to facilitate further integration steps. In the example of Figure
1, we simplify the second graph by transforming the company vertices into properties of

196 Matthias Kricke, Eric Peukert, Erhard Rahm

Operator GrALa
Property To Vertex graph.propertyToVertex(label, propertyName, newLabel,

newPropertyName, edgeConfig, condense)

Vertex to Property graph.propagateToNeighbor(label, edgeConfig)

Vertex To Edge graph.vertexToEdge(vertexLabel, newEdgelLabel)

Edge To Vertex graph.edgeToVertex(edgeLabel, newVertexLabel,
edgeLabelSourceToNew, edgeLabelNewToTarget)

Connect Neighbors graph.connectNeighbors(vertexLabel, edgeDirection,
neighborVertexLabel, newEdgeLabel)

Invert Edge graph.invertEdge(label, newLabel)
Cluster Fusion graph. fuse(fusionConfig)
Grouping graph. groupBy (vertexGroupingKeys, edgeGroupingKeys)

Cypher Construct graph.query(patternQuery, constructionQuery)

Tab. 1: Overview of structural graph transformation operators in Gradoop. Italic operations are new.

person vertices. To integrate the different graphs, we have to identify matching vertices
and edges that need to be fused together. Given that the graphs may contain vertices and
edges of many different types this is typically a complex process that is currently under
investigation. What has already been implemented is the FAMER system [SPR17, SPR18]
to link and cluster equivalent entities from multiple graphs, e.g., the vertices for the same
person in the example. Clustered entities are fused together to create a single vertex in the
integrated graph with the combined property values (e.g., for person Bob in the example).
The integrated graph can be further transformed to support specific analytical purposes.

4 Graph Transformation

Table 1 gives an overview on the implemented transformations in Gradoop that change the
graph structure. Additional simpler transformations include property transformations to
change properties based on an UDF or basic functions like string splitting or concatenation.
Due to space restrictions we only describe the first five transformations in more detail in the
following. The grouping and Cypher operations have already been described in earlier work
[JPR17, Jul7b]. Grouping allows us to determine structural graph aggregations with super-
vertices and super-edges summarizing several vertices and edges based on common label
and property conditions. Gradoop also has initial Cypher support to specify construction
patterns such that the found instances for a query pattern can be transformed. We omit the
description of the invert edge operation since it is simple and only inverts the edge direction
plus the label of the edge. The cluster fusion operation combines several equivalent vertices
into one and takes the union of different properties and combines different values for the
same properties based on a specified function, e.g., to prefer the longest string or values
from preferred sources (similar to fusion operations for relational data [BN09]).

Graph Data Transformations in Gradoop 197

Person City Person
lives_in P i i -
name: Bob — name: Leipzig lives_in name: Alice
lives_in: Leipzig lives_in: Leipzig
Person Interested in .Imerest . in Person
name: Bob name: Music name: Alice
interests: [Soccer, Music] interests: [Music]
Interest

interested_in name: Soccer

Fig. 2: PropertyToVertex examples for atomic (top) and collection (bottom) properties. Newly
created/removed elements are shown in green/red, respectively.

In general, it is desirable that one can reverse the effect of graph transformations unless
they lead to a reduced information such as deletes or grouping. We therefore have pairs of
transformations and their inverse operations (propertyToVertex and VertexToProperty,
EdgeToVertex and VertexToEdge). Furthermore we have to deal with both atomic and
collection-based properties as well as with the creation / avoidance of duplicate information.

4.1 Property to Vertex & Vertex to Property

Property extraction is one of the most basic transformations and expressed in GrALa
as: graph.propertyToVertex(label, propertyName, newlLabel, newPropertyName,
edgeConfig, condense). It applies to all vertices of a given label and for the values
of property propertyName it creates new vertices with label newLabel and property
new PropertyName. For collection-based values a vertex is created for every value in the
collection. Note that this operator is very beneficial to transform data imported from data
files (e.g., in CSV format) into a property graph. In this case, one can generate a vertex
per input record and then generate additional vertices and connecting edges for selected
properties by applying propertyToVertex.

Since the same property value can occur many times, the creation of new vertices can lead
to many duplicate vertices. We can thus choose to avoid such duplicate vertices (parameter
condense). Such vertices can thus be connected to multiple originating vertices and thus
represent shared information. The deduplication with the condense option is limited to
equal values and thus only covers clean data sources. Hence, an additional deduplication for
the created vertices may become necessary to fuse equivalent vertices with different names.

The user has several options to connect a newly created vertex to the original vertex with
parameter edgeCon fig: no edge, origin to new, new to origin and bidirectional. If an edge
is created a user-defined label is set which is defined in the edgeCon fig. The upper example
in Fig. 2 shows the extraction of the atomar property lives_in. Alice and Bob are living
in the same city and therefore the City vertex is deduplicated based on the value of the
property name. All vertices Leipzig originates from are the start point of an edge with the
label lives_in while the City vertex is the target of these edges. The edgeCon fig for this

198 Matthias Kricke, Eric Peukert, Erhard Rahm

promo_invited
name: NewYearlnvite
Promotion . l Person

par -
name: NewYearInvite name: Alice

Fig. 3: The edge promo_invited is replaced (red) by the Promotion vertex with two edges (green) by
using the Edge to Vertex operator. The Vertex to Edge operator inverts this operation.

invited

example is: (label: lives_in; direction: origin to new). For the second example of Figure 2,
we have a shared interest in Music so that this new vertex is connected to both Bob and
Alice. This representation is obviously much better suited to analyze shared interests than
the use of interest properties.

The inverse operation vertex to property is relatively straight-forward. Here /abel and
edgeConfig are used to select the vertices to transform as well as the target vertices where
the new properties should be added. As a result we can reverse both transformations shown
in Figure 2.

4.2 Edge to Vertex & Vertex to Edge

The Edge to Vertex operator is beneficial for already existing graph structures.
It creates a new vertex and two new edges for every edge with the desired la-
bel in the graph. GrALa code: graph.edgeToVertex(edgeLabel, newVertexLabel,
edgeLabelSourceToNew, edgelLabelNewToTarget). For the example in Figure 3 the
GrALa call would be: graph.edgeToVertex(promo_invited, Promotion, participated,
invited). The operator turns the edge promo_invited between Alice and Bob with all its
properties into a vertex and adds two user-defined edges.

The intuitive counterpart to Edge to Vertex is Vertex to Edge. It converts vertices
with a specified label into edges between adjacent vertices. In GrALa it is defined as:
graph.vertexToEdge (vertexLabel, newEdgeLabel). To identify the necessary edges we
select the "middle vertex" v with the specified label vertexLabel (which is to be replaced)
and compose every direct neighbor with an edge going to v with every neighbor with an
outgoing edge from v. With the Vertex fo Edge operation we can revert the example given in
Figure 3. The sole entry in the source set is Alice and in the target set Bob. Hence, an edge
is created between Alice and Bob with the new label and all properties.

4.3 Connect Neighbors

The operator Connect Neighbors is designed to create relations between same-type ver-
tices sharing a common neighbor vertex, e.g., employees of the same company (Fig.

Graph Data Transformations in Gradoop 199

empmye o atal Company) employed_a [Person)
[name:Sunshine Lig_ €

colleagues _
name:Sunshine Ltd

Fig. 4: The example shows two Persons that got connected by there shared Company.

4) or authors of the same publication. In GrALa, the operator call is expressed by us-
ing: graph.connectNeighbors(vertexLabel, edgeDirection, neighborVertexLabel,
newEdgeLabel). Here, vertexLabel is the label of the central (shared) vertex and
neighborVertexLabel the label of the vertices to be connected. Parameter edge Direction
is interpreted with respect to the shared vertex and can either be incoming, outgoing or
undirected. For each pair of indirectly connected vertices of type neighborVertexLabel a
new bidirectional edge of type new EdgeLabel is created. This is in contrast to the Vertex to
Edge operation that creates directed edges and can be applied to vertices between neighbors
of different type as shown in the example of Fig. 3.

Figure 4 shows an example where Bob and Marc share the same Company vertex. Therefore,
the vertex and the two edges pointing to it are removed in favor of the colleagues edge
which retains the properties of the removed vertex. If several edges are created, each of those
edges is containing the property set of the removed vertex. The operation can also be used
to create a co-author network from a publication network as discussed in the introduction.

5 Evaluation & Discussion

For the evaluation of the operators we used Flink version 1.5.0, Gradoop version 0.4.1 and
a subset of the OpenAcademicGraph (as of 2017-06-09, MAG files 1 - 59)[Sil5, Ta08].
OpenAcademicGraph contains two bibliographic datasets: the MAG dataset with 166
million and the the AMiner dataset with 155 million publication records. Each line in the
datasets contains the Json representation of one publication.

Our subset contains 60 million publication records from the MAG dataset and comprises
102,5 GB of unpacked data. We read the data with the JsonDatalmport of Gradoop that
resulted in a so-called Initial evaluation dataset of 60 million vertices. However, some of
our operators (Edge to Vertex, Connect Neighbors) require the data to already contain edges
and relations between vertices. We thus created a second dataset called Extended using the
PropertyToVertex operation. We extracted the properties author, affiliation, keywords and
field of study all with condense option activated. This resulted in 100 million vertices and
74 million edges. Note that this graph may still include some deduplication problems not
covered by PropertyToVertex, e.g., due to different variations of author or affiliation names.

We executed our benchmark operations on a Shared Nothing cluster of the Leipzig University
Computing Center. We used 9 nodes of the cluster where each had 2 sockets equipped with

200 Matthias Kricke, Eric Peukert, Erhard Rahm

Atomic Property Extraction || Collection Property Extraction
Configuration min | average max min | average max
no edge, no condense || 821s | 838.2s 857s 851s | 866.1s 894s
no edge, with condense 829s 846.7s 875s 853s 873.8s 899s
create edge, no condense 848s 853.3s 860s 910s | 1066.7s 1235s
create edge, with condense 924s 940.6s 955s 905s 927.1s 955s

Tab. 2: Runtimes of atomic and collection property extraction.

6 core CPUs (Intel Xeon E5-2620 v3, 2.4 GHz, supports Hyperthreading), 128GB RAM,
6 SATA hard disks with 4 terabyte each and 10 Gigabit/s Ethernet interface. One node
was designated to be the master node while all others where configured to work with 96
task executors in total (12 each). Each tested operator was executed at least 10 times and
measurements contain I/O.

Table 2 shows the runtimes of the PropertyToVertex operator for atomic and collection-based
property extraction. We consider the impact of whether or not edges are created between
newly created and original vertices as well as whether or not property values are deduplicated
(condense options). For the atomic case, we consider the venue properties and for the
collection-based extraction we use the FoS properties (Field of Study) of publications. We
observe that there are mostly only small differences between atomic and collection-based
extraction. In the atomic case 22 million venue vertices and edges are created without
deduplication and only 10 million vertices with deduplication. The collection-based property
extraction created 40 million FoS vertices and edges without and 12.5 million vertices
with deduplication. The highest runtime is in the collection-based scenario where more
than 50 million new graph elements are created. Deduplication with the condense options
typically incurs only a small additional runtime. For the collection-based extraction it is
even faster since the much lower number of vertices to be created more than outweighed the
deduplication effort.

Operator | minimum | average | maximum
Vertex to Property 1449s 1528.5s 1635s
Vertex to Edge 1055s 1088s 1147s

Edge to Vertex 69s 72,3s 76s
Connect Neighbors 1964s 2148.6s 22965
Invert Edges 63s 66.65s 70s

Tab. 3: Runtimes of structural transformations.

The evaluation of the remaining transformations are based on the second dataset and Table 3
shows the resulting runtimes. We observe that edge-based transformations achieve the lowest
runtimes favored by a small number of properties for edges. This makes communication in
the cluster and creating new objects less expensive. Furthermore, the transformations can be
implemented using only the vertex Ids. In contrast, operators like Vertex to Edge, Connect
Neighbors or Vertex to Property rely on the graph structure and the whole graph needs to

Graph Data Transformations in Gradoop 201

be loaded. ConnectNeighbors turned out to be most expensive. For our evaluation this
operator creates the co-author connections between authors of the same paper.

6 Conclusion & Future Work

We proposed structural transformation operations for property graphs with simple or
collection properties to facilitate data integration and graph analysis. The operations have
been implemented with Apache Flink and added to the open-source platform Gradoop. An
initial evaluation for bibliographic data showed the applicability and relative efficiency of
the operators. In future work we will further evaluate and optimize graph transformation
operators and their use in real application scenarios as well as for graph-based data
integration, in general.

7 Acknowledgements

This work was funded by the German Federal Ministry of Education and Research within
project ScaDS Dresden/Leipzig (BMBF 011S14014B). Computations for this work were
done with resources of Leipzig University Computing Center.

References

[An18] Angles, R. et al.. G-=CORE: A core for future graph query languages. In: Proc. ACM
SIGMOD. pp. 1421-1432, 2018.

[Ar10] Arendt, T.; Biermann, E.; Jurack, S.; Krause, C.; Taentzer, G.: Henshin: advanced concepts
and tools for in-place EMF model transformations. In: MODELS. pp. 121-135, 2010.

[Bel5] Benelallam, A.; Gémez, A.; Tisi, M.; Cabot, J.: Distributed Model-to-model Transformation
with ATL on MapReduce. In: Proc. ACM SIGPLAN. pp. 3748, 2015.

[BNO9] Bleiholder, Jens; Naumann, Felix: Data fusion. ACM Computing Surveys (CSUR), 41(1):1,
2009.

[Eh97] Ehrig, H. et al.: Algebraic approaches to graph transformation. In: Handbook Of Graph
Grammars And Computing By Graph Transformation: Volume 1: Foundations, pp. 247-312.
World Scientific, 1997.

[Gr18] Green, A.; Junghanns, M.; Kiessling, M.; Lindaaker, T.; Plantikow, S.; Selmer, P.: open-
Cypher: New Directions in Property Graph Querying. In: Proc. EDBT. 2018.

[Jal3] Jain, N. et al.: Graphbuilder: scalable graph ETL framework. In: Proc. 1st GRADES
Workshop. 2013.

[JPR17] Junghanns, Martin; Petermann, André; Rahm, Erhard: Distributed grouping of property
graphs with GRADOOP. Proc. BTW conf., 2017.

202 Matthias Kricke, Eric Peukert, Erhard Rahm

[Jul6]

[Jul7a]

[Jul7b]

[Jul8]

[KTG14]

[KVH18]

[Lel5]

[L&93]

[Mal0]

[RN10]

[RN12]

[Ro15]

[Sil5]

[SPR17]

[SPR18§]

[Ta08]

[TH17]

[XD17]

[XKDI15]

Junghanns, M.; Petermann, A.; Teichmann, N.; Gémez, K.; Rahm, E.: Analyzing extended
property graphs with Apache Flink. In: Proc. SIGMOD Workshop on Network Data
Analytics. 2016.

Junghanns, M. et al.: Management and analysis of big graph data: current systems and
open challenges. In: Handbook of Big Data Technologies, pp. 457-505. Springer, 2017.

Junghanns, Martin; Kieling, Max; Averbuch, Alex; Petermann, André; Rahm, Erhard:
Cypher-based graph pattern matching in GRADOOP. In: Proc. GRADES workshop. 2017.

Junghanns, M.; Kiefling, M.; Teichmann, N.; Gémez, K.; Petermann, A.; Rahm, E.:
Declarative and distributed graph analytics with GRADOOP. PVLDB, 11(12), 2018.

Krause, C.; Tichy, M.; Giese, H.: Implementing graph transformations in the bulk syn-
chronous parallel model. In: FASE. 2014.

K., Vasiliki; V., Vladimir; H., Seif: High-Level Programming Abstractions for Distributed
Graph Processing. IEEE Trans. Knowl. Data Eng., 30(2):305-324, 2018.

Lee, S.; Park, H.; Lim, S.; Shankar, M.: Table2Graph: A Scalable Graph Construction
from Relational Tables Using Map-Reduce. In: Proc. IEEE Conf. Big Data Computing
Service and Applications. pp. 294-301, 2015.

Lowe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109(1-2):181-224, 1993.

Malewicz, G.; Austern, M.; Bik, A.; Dehnert, J.; Horn, L.; Leiser, N.; Czajkowski, G.:
Pregel: a system for large-scale graph processing. In: Proc. ACM SIGMOD. 2010.

Rodriguez, M.; Neubauer, P.: Constructions from dots and lines. Bulletin of the American
Society for Information Science and Technology, 36(6):35-41, 2010.

Rodriguez, M.; Neubauer, P.: The graph traversal pattern. In: Graph Data Management:
Techniques and Applications, pp. 29-46. IGI Global, 2012.

Rodriguez, M. A.: The Gremlin Graph Traversal Machine and Language. In: Proc. Symp.
Database Programming Languages. pp. 1-10, 2015.

Sinha, A.; Shen, Z.; Song, Y.; Ma, H.; Eide, D.; Hsu, BJ.; Wang, K.: An overview of
Microsoft Academic Service (MAS) and applications. In: Proc. WWW. 2015.

Saeedi, A.; Peukert, E.; Rahm, E.: Comparative evaluation of distributed clustering schemes
for multi-source entity resolution. In: Proc. ADBIS conf. pp. 278-293, 2017.

Saeedi, A.; Peukert, E.; Rahm, E.: Using Link Features for Entity Clustering in Knowledge
Graphs. In: Proc. ESWC. 2018.

Tang, J.; Zhang, J.; Yao, L.; Li, J.; Zhang, L.; Su, Z.: Arnetminer: extraction and mining of
academic social networks. In: Proc. ACM SIGKDD. pp. 990-998, 2008.

Tung, L.; Hu, Z.: Towards systematic parallelization of graph transformations over Pregel.
Int. Journal of Parallel Programming, 45(2):320-339, 2017.

Xirogiannopoulos, K.; Deshpande, A.: Extracting and Analyzing Hidden Graphs from
Relational Databases. Proc. ACM SIGMOD, pp. §97-912, 2017.

Xirogiannopoulos, K.; Khurana, U.; Deshpande, A.: GraphGen: Exploring Interesting
Graphs in Relational Data. PVLDB, 8(12):2032-2035, 2015.

Similarity

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 205

Efficient Bounded Jaro-Winkler Similarity Based Search

Jan Martin Keil!

Abstract: The Jaro-Winkler similarity is a widely used measure for the similarity of strings. We
propose an efficient algorithm for the bounded search of similar strings in a large set of strings. We
compared our approach to the naive approach and the approach by DreBler et al. Our results prove a
significant improvement of the efficiency in computation of the bounded Jaro-Winkler similarity for
querying of similar strings.

Keywords: Jaro-Winkler Similarity; Similarity Search; String Similarity

1 Introduction

The Jaro-Winkler similarity is a widely used measure for the similarity of strings. It was
developed for the detection of duplicated persons in a dataset based on their name [Wi90].
Compared to other measures it provides both good results and fast computation [CRFO03].
Nevertheless, the sequential calculation of the Jaro-Winkler similarity for the search of
similar strings in large sets of strings is still a time-consuming task. Therefore, an optimized
algorithm is needed for time-sensitive use cases like real time duplicate detection during
data input, real time identification of named entities in input text (named entity linking), or
real time fuzzy search.

We propose an optimized algorithm for the search of similar strings in a large set of strings.
This work is structured as follows: In Sect. 2, we explain the Jaro-Winkler similarity and
give an overview of related work, followed by the description of our approach in Sect. 3. In
Sect. 4, we present the empirical evaluation of our approach. Finally, we conclude our work
in Sect. 5.

2 Related Work

In this section we introduce the Jaro-Winkler similarity as well as other work on the efficient
computation of this similarity measure.

I Heinz Nixdorf Chair for Distributed Information Systems, Institute for Computer Science, Friedrich Schiller
University Jena, Germany, jan-martin.keil @uni-jena.de, https://orcid.org/0000-0002-7733-0193

@@ doi:10.18420/btw2019-13

https://creativecommons.org/licenses/by-sa/4.0/
jan-martin.keil@uni-jena.de
https://orcid.org/0000-0002-7733-0193
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-13

206 Jan Martin Keil

2.1 Jaro-Winkler Similarity

The Jaro-Winkler similarity, often wrongly called Jaro-Winkler distance, is a similarity
measure for two strings proposed in [Wi90]. It is based on the Jaro similarity

l~(’” + 2 +—m_’) :m >0

Jaro(sl,sz) = {8 TsiT ™ Tsal m (1)

: otherwise

where |s1], |s2| are the lengths of both strings, m is the number of matching characters,
and ¢ is the number of transpositions. Matching characters are common characters in both
strings with a maximum distance of w = w — 1 [DN17; Wi90]. Some sources

give an alternative definition of w = w [CRFO3]. A character matches at most one
character in the other string, selected by picking the first candidate during a nested iteration
over both strings. The number of transpositions ¢ is half the number of not equal positions in
the concatenated strings of all matching characters in order of original occurrence [CRF03;
Wi90]. Contrary to frequent assumptions, ¢ is not equal to the number of permutations that
is required to align the order of the matching characters. For example, t(abc, bca) = 1.5,
even though two permutations are required to align the matching characters abc and bca.

The Jaro-Winkler similarity adds a boost for equal prefixes to high Jaro similarity values:

J s +[-p-(1-] s] s >b
JaroWinkler(s,, s,) = | (2r0(132) + L p- (1 =Jaro(sy, 52)) - : Jaro(si, 52) 2 b,
Jaro(sy, s2) : otherwise

[is the length of the common prefix of both strings up to a maximum lp,4, b; is the boost
threshold, p is the prefix scale, and lpo,nq - p < 1 must holds true. Implementations typically
use the values lpoung =4, by = 0.7, and p = 0.1 as in the original implementation?.

2.2 Efficient Jaro-Winkler Similarity Computation

Drefiler et al. proposed an optimized algorithm to reduce the computation effort for pairwise
similarities of strings from two large sets of strings given a similarity threshold [DN17].
They reduced the number of Jaro-Winkler similarity computations by applying filters to
the pairs of strings. The first filter determines an upper bound of the Jaro similarity based
on the lengths of both strings. The second filter determines an upper bound of the Jaro
similarity based on the maximum number of matching characters using the character
histograms of both strings. This approach provides an enormous performance improvement
compared to a naive implementation for the matching of two large sets of strings. Therefore,
it is useful for the matching of datasets or the detection of duplicates. However, if the task is
to process user input or queries, i.e. compare one or a few strings with a large set of strings,

2 https://web.archive.org/web/19990822155334/http://www.census.gov:80/geo/msb/stand/strcmp.c

https://web.archive.org/web/19990822155334/http://www.census.gov:80/geo/msb/stand/strcmp.c

Efficient Bounded Jaro-Winkler Similarity Based Search 207

a naive implementation outperforms this approach due to its overhead. Thus, this approach
is not appropriate for the processing of user input or queries.

A recently published approach by Wang et al. addresses this issue [WQW 17]. They developed
an index for the Jaro-Winkler similarity search that contains special string signatures. Based
on a lower bound of the number of matching characters and these signatures, they select
candidate strings that might be similar to a query string. Further, the order of the signatures
in the index allows to abort the scan of the remaining index at a certain point.

3 Approach

We propose another Jaro-Winkler similarity algorithm, which reduces the computational
effort for the search of strings (terms) that are similar to a single string 5| (query) in a
large set of strings S, (terminology) given a similarity threshold 6. The terminology will
be stored in a customized PATRICIA tree [Mo68] that additionally stores at each node
the string lengths of all subjacent leaf nodes. This enables to skip irrelevant terms by
skipping whole branches of the tree. Compared to a trie it avoids node chains without
junctions at the bottom. This reduces the number of similarity computations. The maximum
distance between matching characters (w) and thereby the number of matching characters
(m) depends on the lengths of both strings. Therefore, the tree will be traversed once for
each length of terms in the terminology, as in List. 1. Nodes without subjacent leaf nodes
with this length will be ignored. Many traversals will stop at the root node, due to of the low
maximum Jaro-Winkler similarity of strings with a notable difference of lengths.

During the traversal at each node the maximum Jaro-Winkler similarity will be computed
based on the query string 51 and the known prefix s3 of the term strings, as in List. 2. If the
maximum Jaro-Winkler similarity is less then the threshold 6, the traversal of the current
branch will be skipped, as in line 11 of List. 2. This requires a function for the maximum
Jaro-Winkler similarity of a string s; and all strings S with prefix s3 and length |s3]|.
JaroWinkler, Jaro, /, m, and ¢ depend on s; and s,. Given max (Jaro) > b;,,0 <[-p <1,

SzES;
and 0 < Jaro < 1, then

max (JaroWinkler) = max (Jaro+/ - p - (1 — Jaro)) 3)

SzGSik SzGS%K
=max(l —1+Jaro+l-p—1-p-Jaro) @

SzES;
= max(l — (1 —Jaro) - (1 -1-p)) ®))

SQES;

1= (1 = max(Jaro)) - (1 = max (I) - p) ©)

208 Jan Martin Keil

Therefore, the maximum Jaro-Winkler similarity is

1-{1-max(Jaro)|-|1— max(/) - : max (Jaro) > b,
max (JaroWinkler) = (szeS;()) (SZES;() p) szes;() !

€S @)
Ry .
2= MaXs, es; (Jaro) : otherwise
The function for the maximum Jaro similarity is
max (m) max (m) min (7)
1 5)€S3 57683 57€S3
3 +1-—= :max(m) >0
max (Jaro) = { 3 Istl Is21 STSSX*(M) $2€5) ®)
$2€S] 2
0 : otherwise
List. 1: Search Initialization List. 2: Tree Traverse

FUNCTION search(sy,S>,6) FUNCTION traverse(node,sy,|s2| ,s; ,0,w,s,&result)

1 1
2 treeRoot := tree(S>) 2 FOREACH characters of node AS ¢
3 result := & 3 append(x;,c)
4 FOREACH lengths(treeRoot) AS |s7] 4 updateMaxL (s ,S;,W,C,S)
max(|syl,|s1) . l
5 W o= ————=—- —] 5 updateMinM(sy,s,,W,c,s)
6 s := newState() 6 updateMinT(s|,s5,W,s)
7 s.minM := 6 7 updateMaxM(si,s;,W,s)
8 s.minT := (\)‘ 3 TF |5 = |s;|
9 s.maxL := min(4, |s1], |s2]) 9 finaliseMinT B
10 s.saveCommonCharsl := 0 inalise 11:‘ Gs1,55,9)
11 s.assignedl := boolean[|s;|] 10 maxJWs := using Eq. (7)
12 s.assigned2 := boolean[|ss|] with |si|,|s2]|,s.maxL,s.maxM,s.minT
13 s.commonChars2 := "" 11 IF maxJus 2?
14 traverse(treekoot,sl,|s2|,s;,9,w,s,result) 12 IF |s2] = |32|
15 RETURN result 13 add(result,<s§,maxJWS>)
14 ELSE
15 FOR child € children(node)
16 IF |sp| € lengths(child)
17 sc := deepCopy(s)
18 traverse(child, s, |sz] ,S; ,0,w,sc,result)

At each traversed node maxg, es; 1), Maxy, es; (m), and minsZES; (#) will be computed. The
effort can be reduced by reusing results from the parent node and updating them according
to the new s, characters. For each new character it will be checked, if MaXs, es; (1) needs
to be reduced, as in List. 3. To compute maxg, €S} (m), for each new character ming, S3 (m)
needs to be updated, as in List. 6: Each new s, character will be compared to the not
matched s characters in range. The first matching s; character according to reading order
will be selected and minsZegz (m) will be updated. MaXxs, es; (m) will then be computed once
per node by adding the number of possible further matches to minsZES; (m), as in List. 7.
ming, es; (t) can only be computed for s; characters that are already outside of the range of
new s, characters, as new matching characters of s; might be located before earlier ones.
Therefore, for each new s, character minsZeS; (t) can be updated regarding s characters
at a new save position, as in List. 4. When s, is complete, ¢ can be updated regarding the
remaining characters of 51, as in List. 5. This algorithm overestimates MaXxs, es; (Jaro) if ¢
and m can not achieve their extreme values at the same time. For example, for s; = abcd and

Efficient Bounded Jaro-Winkler Similarity Based Search 209

s2 = bo.. the values are MaXs, es; (m) =4 and minslesg (t) =0, but maxsZes;,,zo(m) =3
and minsZeS;,mj;(t) = 1.

List. 3: Computation of maxg, ¢ S3) List. 6: Computation of ming, ¢ S3 (m)
1 FUNCTION updateMaxL(sl,sg,vv,c,s) 1 FUNCTION updateMinM(sl,s;,vv,c,s)
2 IF Isg\ < lpouna AND s] [|S;| —-11 # ¢ 2 FOR i := max(0, Isé‘l -w-—1) T0
3 s.maxL := [s7| -1 min(|sy |, [s7]+w) -1
3 IF not(s.assigned1[i]) AND s[i] = ¢
4 s.assignedl[i] = true
List. 4: Computation of ming, es; (1) 5 s.assigned2[|sj| — 11 = true
6 append (s.commonChars2,c)
1 FUNCTION updateMinT (s ,S;,W,S) 7 s.minM := s.minM + 1
2 i:=Is5l-w-1 8 BREAK
3 IFO0<iANDi<]|sq
4 IF s.assignedl1[i]
5 IF s1[i] # s.commonChars2[s.saveCommonChars1] List. 7: Computation of maxg, ¢S (m)
6 s.minT := s.minT + 0.5 2
7 s.saveCommonCharsl := s.saveCommonCharsl + 1 1 FUNCTION updateMaxM(s| ,sz*,w,s)
2 assignablel := 0
3 FOR i:= max(0, [s;| —w —1) TO
List. 5: Final computation of ¢ min(|s; |, |s2] +w) — 1
4 IF not(s.assigned1[i])
1 FUNCTION finaliseMinT(si,s;,w,s) 5 assignablel := assignablel + 1
2 FOR i:= max(0, [s;|—w[) TO min(|si], [s2]+w)—-1 6 assignable2 := |s2| — |s}|
3 IF s.assigned1[i] 7 s.maxM : = s.minM + min(assignablel,
4 IF s1[i] # s.commonChars2[s.saveCommonCharsl] assignable2)
5 s.minT :+= s.minT + 0.5
6 s.saveCommonCharsl := s.saveCommonCharsl + 1

The underlying strategy of our approach as well as the approach by Wang et al. is the early
termination of the similarity computation for not similar strings. However, our approach
successively approximates the similarity and extensively reuses earlier results. Conversely,
the approach by Wang et al. once filters the strings by a rough upper bound of the similarity
before computing the exact similarity. Both approaches skip computations for strings based
on the intermediate results for other strings.

4 Evaluation

For the evaluation we used a Java implementation of each algorithm. Our implementation
is publicly available® and was used in version 0.1. For the algorithm by Dresler et al. we
used their implementation“. To avoid a bias, we added a few modifications?, including the
removal of a parallel execution management overhead during serial execution, and correction
of bugs that skip parts of the result. While some of the changes decrease the runtime of
the implementation, others increased them. However, to the best of our knowledge, the

3 https://mvnrepository.com/artifact/de.uni_jena.cs.fusion/similarity.jarowinkler/0.1.0
4 https://github.com/kvndrsslr/SemanticWeb-QuickJaroWinkler
5 https://github.com/fusion-jena/QuickJaroWinkler

https://mvnrepository.com/artifact/de.uni_jena.cs.fusion/similarity.jarowinkler/0.1.0
https://github.com/kvndrsslr/SemanticWeb-QuickJaroWinkler
https://github.com/fusion-jena/QuickJaroWinkler

210 Jan Martin Keil

modifications did not add any unnecessary increase of the runtime. For the naive algorithm
we used the Jaro-Winkler similarity implementation provided in the Apache Commons Text
library® version 1.4. To correct the computation results we added a few modifications?,
which became part of the 1.5 release of the library. A comparison to the approach by Wang
et al. was not possible. The approach is not described in sufficient detail in the paper to
reimplement it and the implementation is not publicly available. We are in contact with the
authors, though, and aim to compare the approaches in the future.

All implementations require a preparation of the terminology, like building up the PATRICIA
tree, but of different extent. We distinguished between the preparation and the actual similarity
computation. To evaluate our approach we tested the following hypothesis:

Hypothesis 1 Using our algorithm will improve the efficiency of the bounded Jaro-Winkler
similarity computation between few queries and prepared large sets of terms, compared to
the algorithm by Dresler et al. and the naive algorithm.

4.1 Methods

We used the Java benchmark harness OpenJDK JMHS3 to execute performance measurements
of the three implementations. A collection of 1.429.572 names from the dataset “Person data”
in the DBpedia dump 2016-10° was used as test data. We used the following measurement
parameters, which cover the intended use cases: (a) The number of queries (10° to 10°; 106
was skipped du to long duration), (b) the number of terms (10° to 10%), (c) the threshold of
the Jaro-Winkler similarity(0.91, 0.95, 0.99). (d) the overlap of the set of query string and
term strings (full means that all terms are contained in the queries, if possible for the given
number of queries; half means that half of the terms are contained in the queries, if possible;
none means that none of the terms is contained in the queries), and (e) the preparation
of the terminology, specifying whether the time for preparation will be contained in the
measurement (unprepared) or not (prepared).

Each configuration and implementation was executed on three machines with 20 different
pseudo random subsets of names for the terms and the queries, resulting in 60 executions
per configuration and implementation. We measured the throughput, which is the number of
executions of all queries (= one operation) per second. The usage of the throughput results in
a high precision of the measurement for short running computations, but decreasing precision
for longer running computations. This fits to the intended use cases. The measurements were
executed on 18 machines each equipped with two Intel Xeon Scalable 6140 18 Core 2,3 Ghz
processors and 192 GB memory. Parallel computation was not used to avoid measurement

6 https://commons.apache.org/proper/commons-text/
7 https://github.com/apache/commons-text/pull/87

8 http://openjdk.java.net/projects/code-tools/jmh/
9 https://wiki.dbpedia.org/downloads-2016-10

https://commons.apache.org/proper/commons-text/
https://github.com/apache/commons-text/pull/87
http://openjdk.java.net/projects/code-tools/jmh/
https://wiki.dbpedia.org/downloads-2016-10

Efficient Bounded Jaro-Winkler Similarity Based Search 211

errors. The measurement code, execution scripts, analysis scripts and result files are publicly
available!©.

4.2 Results

We used the Welch’s t-test (unequal variances t-test) to compare the measurements, as we can
not assume equal variance. First, we compared the three executions with equal configuration
and of the same implementation. In 309 of 6570 cases (naive 6, Dresler 246, our 57) we
found significant differences. Therefore, we hereinafter use the median values of the three
corresponding execution. Then, we compared the corresponding measurements of different
implementations. The overlap parameter caused only slightly differences between the
comparison results. Therefore, we omit separate results. Tab. 1 shows the comparison results
of the measurements of different implementations with equal configuration except the overlap
parameter. Every triangle in the table represents the comparison results of 60 measurements
for the column implementation and 60 measurements for the row implementation. The
triangles point at the implementation with higher mean throughput. Comparisons above
the diagonal involved unprepared measurements, comparisons under the diagonal involved
prepared measurements. Bracketed comparisons were not significant. For example, for the
naive approach and our approach and the parameters 1 term, 10 queries, threshold 0.91,
and with preparation the mean throughput of the naive approach was insignificantly higher
represented by (A). Fig. 1 shows the mean measurement for the implementations with 10°
terms, depending on the number of queries, the threshold, and the preparation. All axes are
log scaled.

The results presented in Tab. 1 prove that our approach significantly improves the computation
efficiency of the bounded Jaro-Winkler similarity with 100 to 10° prepared terms, threshold
> 0.91, and up to 10° queries, compared to the approach by Dresler et al. and the naive
approach. Therefore, we accept the hypothesis. Our measurements were limited to 10° terms
and 10° queries. This limitation fits to the addressed use case. The test dataset size and
the time consumed by the measurement are further limiting factors. Due to the limitation,
we can not provide valid results on the comparison of the approaches for larger string sets.
However, the results presented in Tab. 1 indicate that the usage of our approach will improve
computation efficiency for 100 or more terms in case of small query sets. Moreover, they
indicate that the usage of our approach will improve the efficiency of computations with 10
up to 103 queries even if the terminology is unprepared. These limits will become worse by
reduction of the thresholds. Due to the measurements visualized in Fig. 1d and Fig. 1f we
expect that the approach by Dresler et al. will outperform our approach for larger query sets.
However, this is not the use case our approach was developed for. We aim to support the
search for similar strings of one or a few strings in a large set of string.

10 https://github.com/fusion- jena/JaroWinklerSimilarityEvaluation or DOI: 10.5281/zenodo.2269909

https://github.com/fusion-jena/JaroWinklerSimilarityEvaluation
https://dx.doi.org/10.5281/zenodo.2269909

212 Jan Martin Keil

5 Conclusions

We presented a new approach for the efficient computation of the bounded Jaro-Winkler
similarity. This approach has been evaluated by comparing it with the naive approach and
the approach by Drefler et al. [DN17]. Our results prove a significant improvement of the
efficiency in computation of the bounded Jaro-Winkler similarity for querying of similar
strings compared to these earlier approaches. In future work, we aim to also compare our
approach with the approach by Wang et al. [WQW17], depending on the availability of
the implementation or a comprehensive description of the approach. Further, we provide a
ready to use Java implementation of our approach for easy application and adaptation into
other languages. We are convinced, that this work opens up new application fields of the
Jaro-Winkler similarity.

Acknowledgments. Part of this work was funded by DFG in the scope of the LakeBase
project within the Scientific Library Services and Information Systems (LIS) program. The
computational experiments were performed on resources of Friedrich Schiller University
Jena supported in part by DFG grants INST 275/334-1 FUGG and INST 275/363-1 FUGG.
Many thanks to Frank Loffler for very helpful advice on the evaluation setup. Likewise
many thanks to the three anonymous reviewers and the shepherd Ingo Schmitt for very
helpful comments on earlier drafts of this manuscript.

References

[CRFO03] Cohen, W. W,; Ravikumar, P.; Fienberg, S. E.: A Comparison of String Distance
Metrics for Name-Matching Tasks. In (Kambhampati, S.; Knoblock, C. A.,
eds.): Proceedings of IJCAI-03 Workshop on Information Integration on the
Web (IIWeb-03), August 9-10, 2003, Acapulco, Mexico. Pp. 73-78, 2003.

[DN17] DreBler, K.; Ngomo, A. N.: On the efficient execution of bounded Jaro-Winkler
distances. Semantic Web 8/2, pp. 185-196, 2017, por: 10.3233/SW-156209.

[Mo68] Morrison, D.R.: PATRICIA - Practical Algorithm To Retrieve Information
Coded in Alphanumeric. J. ACM 15/4, pp. 514-534, 1968, por: 16.1145/
321479.321481.

[Wi90] Winkler, W. E.: String Comparator Metrics and Enhanced Decision Rules in
the Fellegi-Sunter Model of Record Linkage. In: Proceedings of the Section
on Survey Research. American Statistical Association, pp. 354-359, 1990.

[WQW17] Wang, Y.; Qin, J.; Wang, W.: Efficient Approximate Entity Matching Using
Jaro-Winkler Distance. In (Bouguettaya, A. et al., eds.): Web Information
Systems Engineering - WISE 2017 - 18th International Conference, Puschino,
Russia, October 7-11, 2017, Proceedings, Part I. Vol. 10569. Lecture Notes in
Computer Science, Springer, pp. 231-239, 2017, por: 10.1007/978-3-319-
68783-4_16.

http://dx.doi.org/10.3233/SW-150209
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1007/978-3-319-68783-4_16
http://dx.doi.org/10.1007/978-3-319-68783-4_16

Efficient Bounded Jaro-Winkler Similarity Based Search 213

paredord
(V)i) (e () > | A pVVnVVVVVVVVﬂVVAﬂvmo_
L A |]] o o o VVVVVVVVVVVVVVA<VVVA<;o_
- e ()() VVVVVVVVVVVVVVHQVVVAqvmo_ b
[o o S o s o o S L S N = e e e e > Ve > (V)01 E
L L o S T S o S L L > s s> > V|>(V) VI
L AL L A L L L e L R A LR OB A LR Al
V~=(V)V V|VVVVVUVIVYV Cobi]e b e e e e Ve T (T) V0]
vV VvV V(v VvV VIVVVIVVVIVVYV m,mpVVVVVVVVVVVAVVVVQVAVVQQO_
vV vV V(v V VIVVVIVVVIVVYV V'VVVV'VVV'VVV<V'QVAVV<mo_ m
vV vV V(v V VIV V VIVVVIVVV VVVVVVVVQVV<VV<VV<VAVV<NO_ El
vV vV V(v V VIV V VIVVVIVVV > V> V> V> Ve V|V VIV V VI
E > V> (VM V[»(V)V|> V VIVVY ¥V)V V- (W) V[(V)V[-)V[»>V V(V)V VIV V V]
b (e & LV V RV V V|V V VIVV > (e ¢ LV VY|V VVIVVY VIVVYRT () mo_
V V V|V V V|V V V|V V V|VV0®) VV V|V VVIVVVVV(VVVEV(V)»r vo_
V V V|V V V|V V V|V V V|VV0®) VVV|VVVIVVVVV®|VYEV(V)r mo_
vV VvV V(v V VIV V VIV V VIVV»> VV V|V VsV VRVY®|VYEV (V) No_
vV VvV V|V V V|V V VIV V VIVV > VVEIV VsV VTV E|VEE> > 1
> > > >V V >V (V)s|V> > Ve ey Ve e > > [
166" S6° 167166° S6' 16166° S6° 16166° S6° 16166'S6™ 167 166°S6"16°]66" S6°16766™ S6° 16766'S6™ 167 [66'S6' 16166 S6' 16166™ S6'16166° S6' 16166™ S6° 16166° S6° 16166°S6™ 16" 66 S6° 167|66° S6° 16" [PIOYsAIYL
¢O1 01 c01 201 01 ¢O1 01 01 701 0T 1 901 ¢O1 01 c01 701 0T1 I <] suua
mo 1210 QATEN A soLan

UOoIS1091d MO 0] ANP ‘PAINSEIW DUAIRYIP OU ~ {SJUSWAINSLAW FUTUUNI FUO[0) aNp San[eA as1oaxdur
00} 10 3urssiw /, ‘uonejuowadw mol pawiojradino Apueoyrudisur uonejuawo(dwr uwnjod (V) ‘uonejuswa(dwr mol pawropradino Apueoyrusis
uonejuawadw uwnjod v ‘uonejuowd[dwr uwnjod pauriojradino Apueoyrudisur uonejuawadwr mol (») ‘uoneiuaw[dwr uwnjod pawiojradino
Apueoyrugis uonejuswo[dwil Mol - *sor1anb pue swid) Jo de[1oA0 010z pue ‘Jrey ‘[[nf YA SIUSWAINSBIW PIXIUW JO s}[nsal uostredwo)) :[‘qel,

214 Jan Martin Keil

@ 8

2 g7 —A— Naive

S = | -+ Dresler

7] - Our

£ g

g =

o _

T

u— o _|

o —

5 A

[= - —

£ (X

g < | AT

S o N

_C

= . N

c — N

§ 8- A x

e L
1 10 1000 100000

Number of Queries

(a) Threshold 0.91, unprepared
@ 8
%) [=] —A— Naive
\% 8 B -+ Dresler
» - Our
g g
g 3
o]
T
— o _|
o —
5
A *Q\ Xy

S .
2 Ny
= — +. X
s o N
S <9 | A T

o
e L

=

10 1000

Number of Queries

(c) Threshold 0.95, unprepared

@ 8

%) o —4— Naive

5 8 B -+ Dresler

-g 8 | - Our

e =

o]

T

— o _|

o —

a A

B o RS X X

= J X

%’ - | \A e «

g ° N =

£ | A

g 2 AN A

Q S

e I
1 10 1000 100000

Number of Queries

(e) Threshold 0.99, unprepared

100000

Mean Throughput of all Queries (ops/s) Mean Throughput of all Queries (ops/s)

Mean Throughput of all Queries (ops/s)

1000 10000

01 1 10

0.001

1000 10000

01 1 10

0.001

1000 10000

01 1 10

0.001

—A— Naive
-+ Dresler
- Our

X.

AN

"

TR
\A\ . .
\\X N
I I I I I I
1 10 1000 100000

Number of Queries

Mean Time per Query (ms)

100 1000

10

1

0.01 01

+-o.
A —Kp—a
- X%
X X
N —4— Naive
-+ Dresler
- - Our
I I I I I I
1 10 1000 100000

Number of Queries

(b) Threshold 0.91, prepared

—&— Naive
-+ Dresler
- Our
X
“x
8 x
A X
Nt
Ay x
A ‘+“v»*
I I I I I I
1 10 1000 100000

Number of Queries

Mean Time per Query (ms)

100 1000

10

1

0.01 0.1

n =4 - A—A
e
- S
t
— X X X X ;K
X"
N —4— Naive
-+ Dresler
- - Our
I I I I I I
1 10 1000 100000

Number of Queries

(d) Threshold 0.95, prepared

—&— Naive
X, -+ Dresler
- Our
X
X
X,
&
Sty
A\ B S L%
A +
\A
I I I I I I
1 10 1000 100000

Number of Queries

Mean Time per Query (ms)

100 1000

10

1

0.01 01

Ta—a—a—24
.
T
— \+\
+
T+
— Ly X X
X X S Naive ™
X -+ Dresler
- X Our
T T T T T 1
1 10 1000 100000

Number of Queries

(f) Threshold 0.99, prepared

Fig. 1: Mean of measurements with 10° terms and full, half or zero coverage.

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 215

The Best of Both Worlds: Combining Hand-Tuned and
Word-Embedding-Based Similarity Measures for Entity
Resolution

Xiao Chenlz,3 Gabriel Campero Durand!?3 Roman Zounl,2 David Broneske!?2 Yang Li'?
Gunter Saake!?

Abstract:

Recently word embedding has become a beneficial technique for diverse natural language processing
tasks, especially after the successful introduction of several popular neural word embedding models,
such as word2vec, GloVe, and FastText. Also entity resolution, i.e., the task of identifying digital
records that refer to the same real-world entity, has been shown to benefit from word embedding.
However, the use of word embeddings does not lead to a one-size-fits-all solution, because it cannot
provide an accurate result for those values without any semantic meaning, such as numerical values.
In this paper, we propose to use the combination of general word embedding with traditional hand-
picked similarity measures for solving ER tasks, which aims to select the most suitable similarity
measure for each attribute based on its property. We provide some guidelines on how to choose
suitable similarity measures for different types of attributes and evaluate our proposed hybrid method
on both synthetic and real datasets. Experiments show that a hybrid method reliant on correctly
selecting required similarity measures can outperform the method of purely adopting traditional or
word-embedding-based similarity measures.

Keywords: Entity resolution; Word embedding; Similarity measures; Learning-based entity resolution

1 Introduction

Entity resolution (ER) is the problem to identify digital records within one or among
different data sources that refer to the same real-world entity. A typical solution is first to
generate all candidate pairs, then calculate similarities between each pair [Ch12]. The high
quality of ER results essentially relies on the correct selection of similarity measures, which
is determined by domain experts based on an elaborate analysis of record attributes and
their experiences. Except for the human efforts, traditional methods to calculate similarity
between two records are mostly unaware of semantics, e.g., they determine how similar two

1 Otto-von-Guericke-University of Magdeburg, Institute of Technical and Business Information Systems, Building
29, Universitétsplatz 2, 39106 Magdeburg, Germany

2 E-Mail: {xiao.chen, campero.gabriel, roman.zoun, david.broneske, yang.li, saake} @ovgu.de

3 Acknowledgements: This work was partially funded by the DFG [grant no.: SA 465/50-1] and China Scholarship
Council [No. 201408080093]. Authors would also like to thank the PC and reviewers for the valuable feedback.

©@@®@® doi:10.18420/btw2019-14

https://creativecommons.org/licenses/by-nc/3.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-14

216 Xiao Chen et al.

strings look like in terms of edit distance. As a result, the accuracy may be limited for cases
where words with similar semantics are expressed in different ways.

Recently, there have been several research papers that use word embedding for en-
tity resolution, aiming to overcome the aforementioned limitations of traditional solu-
tions [Eb18] [KAP18] [Mul8]. Word embedding maps words or phrases from the vocabulary
to vectors of real numbers [Yo03] and makes it possible to extract semantic information
conveniently and efficiently. It has become quite popular in various Natural Language
Processing (NLP) tasks, after several neural word embedding models are introduced, such
as word2vec [Mil3a], GloVe [PRS14] and FastText [Bo16]. Generally speaking, by using
word embedding, attributes of records in ER are mapped to a vector space, no matter which
kind of data it is, while capturing semantic similarities between attribute values of a record
pair. Therefore, word embedding can be used to reduce the human efforts. In addition, the
accuracy might also be further improved, since the approach captures semantic similarities
between records.

However, adding an extra word embedding step to the similarity calculation phase will
probably have negative effects on efficiency. For instance for attributes without semantic
meanings, especially attributes with numerical values, it makes little sense to map them to a
vector space using word embedding, because distances between them cannot be correctly
managed due to the missing semantics. Still, numeric data play an important role for
expressing records in financial business data.

Therefore, in this paper, we propose to combine traditional hand-tuned and popular
word-embedding-based similarity calculations for ER, always choosing the most suitable
similarity measures for each attribute in order to achieve the best accuracy for a given input
dataset. Specifically speaking, with regard to attributes with a high appropriateness of word
embedding techniques, word embedding is firstly applied to map the data to vectors using
FastText pre-trained model, then cosine similarity is used to calculate similarities between
record pairs. For other attributes, for which word embedding is not suitable, particularly
numerical values, a tailored similarity function is used.

We summarize our contributions of this paper as follows:
. We propose a hybrid similarity calculation method for ER: the attribute-based

selection between traditional hand-tuned similarity functions and word-embedding
cosine similarity function to achieve a higher accuracy;

. We identify attributes that suit word embedding more than traditional similarity
measures, which provides a guidance of choosing the most suitable similarity measure
for ER;

. We design different combinations of adopted similarity functions and evaluate them

on both real and synthetic datasets. Our results show that the hybrid solution can
outperform other solutions which purely use traditional or word-embedding-based

The Best of Both Worlds: Combining Similarity Measures 217

similarity calculations, when the attributes of a dataset contain both semantic and
non-semantic attributes.

The rest of this paper is organized as follows: We present related work in Section 2. Then
we introduce our hybrid method in Section 3 and show the evaluation result in Section 4. At
last, we conclude our work in Section 5.

2 Related Work

Entity resolution: Most of the ER research is pair-based and shares a common ER process,
as surveyed in [Ch12] and [EPIVO7]. In recent years, along with the increase of input data,
solutions for ER are also asked to be scalable, which facilitates using parallel computing for
ER, Chen et al. give an overview and classification on the research of parallel ER [CSG18].
Word embedding for entity resolution: As aforementioned, recent research has considered
applying word embedding for ER. There are two main research questions of employing
word embedding for ER. One is which embedding granularity to use for ER; the other
one is how to get the vector of each attribute of a tuple after each word or sub-word has
been embedded. Ebraheem et al. adopt word-level embedding using the GloVe pre-trained
dictionary [PRS14] and propose two methods to get the vector representation of an attribute:
an averaging method and an RNN-based method with LSTMs. Then a representation of a
tuple is obtained by concatenating the vectors of all its attributes [Eb18]. Kooli et al. employ
N-gram-level embedding using the the Fasttext library and then concatenate all vectors of
all subwords [KAP18]. N-gram-level embedding should provide more accurate result when
there is a large proportion of infrequent words in the input dataset [Mu18]. For ER tasks,
data is often dirty and contains many infrequent words, therefore, in our work, we also use
N-gram-level embedding. Mudgal et al. study several possible embedding choices from
both the granularity of the embedding and adopted model, and sketch a design space for
deep learning solutions [Mul8].

3 A Hybrid Approach for Entity Resolution

In this section, we introduce our ER process using hybrid similarity calculation methods.
As we explained above, the work in this paper focuses on accuracy. Hence we do not take
blocking (indexing) techniques into consideration to our process. With this, we get the most
exact results since by blocking, we might block away matches in the worst case.

Figure 1 shows the entire process. The process first asks the user whether there is an
available property file, which means the user knows the data quite well and knows the best
choices of similarity functions to compare each attribute (excluding identifiers). If this is the
case, we directly load the property file and divide all attributes into different groups based
on the similarity measures defined in the property file. Otherwise, a property file will be

218 Xijao Chen et al.

Similarity
Functions

ol NA Euclidean
Group Distance

Embedding Process for ER

Analyzing
input data
schema

T |
} Mapping Gettinga Getting
Generating Loading | each vector avector
property Property File SRA || wordto for each for each Cosine Learning-based
filebased ™ and grouping [] Group | | avector [attribute [*] record Similarity classification
on preset attributes | using |
} FastText }

rules

Results of match
and non match

*NA: Numerical Attributes NRA record pairs
SRA: Semantically Related Attributes Ly J_EI'D-
NAR: Non-Semantically Related Attributes | GrOUP Winkler

Fig. 1: Flowchart of our hybrid method

generated based on the input data schema and our preset rules. In order to achieve satisfied
accuracy and provide guidance to choose suitable similarity measures, we classify common
attributes into three groups, propose suitable similarity measures for each group and then
the corresponding property file can be generated:

Numerical attributes (NA): Numerical attributes refer to those attributes, whose values can
be compared, for example, the age. The Euclidean distance is used to provide a satisfactory
accuracy for numerical attributes. However, not all numbers belong to this group. In contrast
to numerical attributes, the other type of numbers are named as numerical strings, which
act like strings and their values cannot be compared to be bigger or smaller. For example,
telephone numbers or postcodes are considered as numerical strings. All numerical strings
belong to the next group: non-semantically related attributes.

Non-semantically related attributes (NRA): These kinds of attributes are those whose
values are without semantic meaning (e.g., people names or numerical strings) and usually
with a short length. In ER tasks, the different values of this type of attributes of a match pair
are usually caused by typos and formats. Using word embedding for this case may consider
those values with a big distance, which can lead to lower accuracy. Therefore, for this group,
we propose to use Jaro-Winkler similarity functions instead of word embedding. Moreover,
Jaro-Winkler has a higher speed than the other traditional functions, such as Levenshtein
similarity.

Semantically related attributes (SRA): The last group is semantically related attributes,
whose values are strings with various meanings (often long), multiple strings or even
whole sentences. For this group, word-embedding plus cosine similarity approach is chosen
to calculate similarity. Traditional syntactical-based similarity measures are not used for
semantically related attributes, because they only check the edit distances between values
of attributes, and are not able to realize the meaning or the distributional semantic behind,
so that they would probably provide unacceptable results. In terms of the predefined rules,
we can calculate the similarity of each corresponding attribute pairs (cf. Section 3.1).
Afterwards, the classification step is performed to divide all pairs into match and non-match
groups (cf. Section 3.2).

The Best of Both Worlds: Combining Similarity Measures 219

3.1 Attribute Similarity

In this subsection, we specify how the similarity of each pair of attributes is calculated by
the preset rules.

NA and NRA Similarity. According to the two rules regarding NA and NRA, the similarity
between two attribute values of records calculated straightforwardly with Jaro-Winkler
similarity and Euclidean metric, because the granularity for them is the entire attribute,
which is calculated with the following formula:

Euclidean(r;.attr, ry.attr), attr € NA;
Jaro_Winkler(ri.attr,ry.attr), attr € NRA.

attrSim(ry.attr, ry.attr) = { (1)
SRA Similarity. Inspired by the work of [Bol6], we use FastText, an extension of the
continuous skip-gram model [Mil3b] that is used to produce word embeddings (i.e., vectors),
to obtain the similarity of semantically related attributes. The FastText model is chosen
instead of word2vec and GloVe because use cases will range across diverse domains. Hence,
we cannot guarantee coverage with only models on word-level.

Vector representation of words. The input of FastText is a text corpus. Given enough text
data and contexts, FastText can achieve highly accurate meanings of the words appearing
in the corpus and establishes a word’s association with other words. The output is a set of
vectors, that is, words in the corpus are transformed a vector representation in a semantic
vector space. Moreover, FastText is capable of predicting the vector representation for words
not occurring in the corpus, since it decomposes each word into a set of characters of
n-grams. Hence, every word appearing in the attribute value can be converted into vector
representation w.

Vector representation of attributes. Considering that there may be two or more words in one
attribute, we achieve the vector representations of attributes by computing the mean value
of all the word vectors in the attribute:

N
Wi

1 ()

n

n
=

aftr =

Therein, n is the number of words in attributes. We compute the cosine similarity between
two attribute vectors to evaluate their similarity. More formally, the similarity of SRA is
represented by:

attrSim(ry.attr, ry.attr) = cosine(ry.attr, ry.attr), attr € SRA. 3)
3.2 Learning-Based Classification

After the similarity for each attribute pair is calculated with their respective methods,
a classification step is used to classify pairs to matches or non-matches. The simplest

220 Xiao Chen et al.

approach is a threshold-based method, which compares the average similarity score with
the preset threshold value. Those pairs whose average score is higher than the threshold are
considered as matches, and vice versa. However, in order to get the average score, similarity
scores for each attribute are firstly summed up, which loses detailed information contained
in the separated attribute similarities [Ch18]. Therefore, in our ER process, we adopt a
learning-based classification step to overcome this drawback. A learning-based classification
method firstly trains a classifier on a training dataset with available match or non-match
labels, then the trained classifier is used to classify pairs with match or non-match status. So
far, there have been different classifiers proposed, how to select a suitable one is based on
the input data properties. In Section 4, we will describe the three classifiers we employ for
our experiments.

4 Evaluation

In this section, we show our designed similarity calculation methods and the evaluation
of their F-measure on different real-world datasets and synthetic datasets. Next, we show
the datasets used for our experiments, and represent designed combinations of similarity
calculation methods, at last we describe the three classifiers we use for the evaluation.

Datasets: Table 1 shows the three datasets we used for our experiments.

The first dataset “DBLP-ACM Citation” include two parts, which are from the DBLP citation
database and the ACM citation database, respectively. All of them have four attributes,
including title, authors, venue and publication year. Therein, “title”,“venue” are considered
as SRAs, while “authors” is NRA and “publication year” is NA.

The second dataset “Amazon-Google Products” includes two parts as well, which are from
Amazon and Google. Both of them have four attributes, including id, name, description,
manufacturer and price. Based on their properties, “name”,““description” and “manufacturer”
are considered as SRAs, while “price” is NA. All above datasets are downloaded from [Le17],
which are benchmark datasets often used for entity resolution.

The last dataset is synthetic and generated by a data generator called GECO [TVC13]. GECO
consists of a GEnerator and a COrruptor, which is specifically designed for generating
ER datasets. The generated dataset contains personal information with the following 13
attributes: gender, given-name, surname, postcode, city, sex, telephone-number, credit-card-
number, income-normal, age-uniform, income, age, and blood-pressure. Therein, the last
five attributes are considered as NAs, while “sex” and “gender” are SRAs and the other
attributes are NRAs.

The first two real datasets are commonly-used benchmark datasets for ER. However, both of
them only contain one numerical value, which we think the most useful attribute type to
show differences of using diffferent combinations of similarity calculations. Therefore, we
involve the generated dataset as well, which contains five attributes with numerical values.

The Best of Both Worlds: Combining Similarity Measures 221

Tab. 1: Datasets used in experiments

Datasets | #Pairs (#DS1&#DS2) | #Matchey #SRA| #NRA #NA

DBLP-ACM 6001104 (2616&2294) 2224 2 1 1
Real Datasets Amazon-Google | 4400264 (1364&3226) 1300 3 0 1
Synthetic Dataset Persons 551250 (1050&1050) 96 2 6 5

Combinations of similarity calculation methods:

Traditional hand-crafted similarity functions only: For this scenario, we use Jaro Winkler
similarity function to calculate the similarity of all string attributes, i.e., NRAs plus SRAs,
and use Euclidean distance to calculate the similarity of all NAs.

Word embedding and cosine similarity based method only: For this scenario, we use
word-embedding-based method for all attributes.

Our proposed hybrid method: We propose to use word embedding for SRAs, Jaro Winkler
for NRAs and the Euclidean distance function for NAs.

Classifiers: We employ three straight-forward classifiers which are intended to represent
general solutions for classification in an ER context.

Tree Boosting (XGBoost): XGBoost consists of an ensemble of regression trees that uses
additive optimization [CG16]. Such approach starts with a low variance, high biased solution,
and gradually reduces the bias by decreasing the sizes of neighborhoods. We employ the
specific XGBoost model, which introduces fine-grained improvements penalizing individual
trees, leading to a competitive classification performance.

Random forest classifier (RF): This is an approach based on multiple decision tree algorithms
for achieving a higher accuracy. It is intended to reduce overfitting risks.

K-nearest neighbor classifier (KNN): This approach considers the k (in our case k=5) closest
training examples for each record to decide on the class membership of the record.

4.1 Results and Discussion

Tab. 2: Evaluation Results with Different Classifiers (F-measure)

Combinations XGBoost | RF KNN
Traditional 100 100 88.46
Generated Dataset | WordEmbedding | 100 100 100
Hybrid 100 100 58.54
Traditional 97.04 97.70 | 95.17
DBLP-ACM WordEmbedding | 92.56 94.82 | 93.94
Hybrid 93.69 94.28 | 89.31
Traditional 20.19 25.35 | 21.11
Amazon-Google WordEmbedding | 19.10 31.09 | 24.10
Hybrid 29.72 38.32 | 19.78

222 Xiao Chen et al.

Table 2 shows the results of our evaluation (results are reported for a random split of
66/34% training/test data, each including respectively 66/34% of the existing match and
non-matches). It shows the F-measure values by using the three aforementioned classifiers
XGBoost, KNN, RF under our three designed combinations of similarity measures on the
three datasets. Next, we will discuss the result of each dataset in detail.

Generated dataset: As can be seen, the F-measure reaches its optimal for the generated
dataset, with word embedding solutions performing consistently well across classifiers. This
is a slightly surprising finding, as most attributes can be labeled as non-semantic. We deem
the goodness of embeddings to be partly dependent on the coverage of the FastText learned
representations. The purpose of using the generated dataset is it contains several NAs, which
is promising to show the accuracy difference between different approaches. However, the
generated dataset still lacks unpredictability and complexity compared to a real dataset, so
that all F-measures are very high and we cannot get valuable conclusions from it. We also
observe that the results of KNN are affected by the existence of irrelevant features, whereby
the similarity of items on one dimension leads to misclassifications for close neighbors.
For its less effective configurations, the model outputs 6 and 21 false positives out of 30,
reducing the F-measure on this dataset.

DBLP-ACM dataset: For the relatively clean and easy citation dataset, the F-measure is
observed to be consistently higher than 95% with traditional approaches outperforming
others. The word-embedding-based and the hybrid approach show lower results. By careful
consideration of its attributes properties, we found that the “title” attribute is, although
having long strings, actually not semantic related. A paper title normally only has one
version and its name usually only differs due to possible typos. Under this situation, word-
embedding-based methods may fail. Therefore, for those attributes with long strings, careful
consideration is needed about whether an edit-distance-based or semantic-based similarity
measure is more suitable for them.

Amazon-Google dataset: For the more complex product dataset (various descriptions may
express the same semantic meaning) we observe that hybrid solutions outperform the other
two pure solutions, and achieve the best results with XGBoost and RF. For KNN we also
observe some problems with the existence of irrelevant dimensions, which increase the
number of false negatives. Overall, embedding-based approaches outperform traditional
solutions (for classifiers RF and KNN), or provide comparable result with XGBoost, which
indicates the necessity to use word embedding for datasets with real semantic attributes. The
hybrid approach performs the best with XGBoost and RF, which indicates that by carefully
choosing word-embedding-based or traditional similarity measure according to attribute
properties (mainly basing on non-semantic and semantic) a better accuracy can be achieved
than using only one of them.

We should also note that the F-measure values we report for this challenging dataset
are much lower than many published results. We attribute this to the fact that almost all
previous research adopts either blocking or thresholding techniques to reduce the amount of

The Best of Both Worlds: Combining Similarity Measures 223

non-matching pairs, so that the training data set is much more balanced, helping to achieve
a higher F-measure. For this paper, our purpose is solely to test the benefit of our proposed
hybrid similarity calculation approach. Therefore, we avoided blocking and thresholding, in
order to highlight the specific impact of the approaches.

To conclude our discussion, a word-embedding-based approach works predominately better
for semantic attributes. For non-semantic attributes it may also be possible to achieve a
F-measure which is comparable (i.e., as seen for the generated dataset) or worse (i.e., as seen
for the DBLP-ACM dataset) than traditional similarity measures. However, for numerical
values, word embedding is not recommended since a hybrid approach shows obviously better
F-measure than only using word embedding (based on the result of Amazon-Google dataset
with XGBoost and RF classifiers). Therefore, the safest way for similarity calculations of ER
problems is to use word embedding for semantic attributes and to use traditional similarity
measures for non-semantic attributes. Besides, interestingly, in our findings we note that
the choice of classifier seems to be secondary to the choice of similarity measures, with
simple classifiers being able to outperform more complex ones, provided they are given
adequate (i.e., descriptive, distinctive) similarity measures as input. We expect this to be
partly explainable from the simplicity of the datasets (for the first two cases) and from the
improvements brought by semantics (in the third case).

5 Conclusion

In this short paper we propose to use a hybrid similarity calculation solution for ER tasks
and provide a practical evaluation of three different combinations of similarity measures
with general machine learning classifiers. We find that embeddings are generally useful,
though they are not a silver bullet, and both hybrid and traditional approaches can achieve
superior results. We find that similarity measures can have a greater impact than the choice
of classifiers in the resulting goodness of an ER process.

In summary, by using a prototypical workflow without blocking or thresholding and
with general classifiers, we show that the current use of word embeddings alongside
traditional measures for entity resolution opens-up a bundle of promising choices for
practitioners, without lending itself easily to a one-size-fits-all solution. We envision two
core challenges: On the one hand, previous work [KROS8] has shown that thresholding,
with a given blocking solution, improves the learning process; similarly work in entity
resolution with embeddings [Eb18] shows good results without quantifying the precise
impact of blocking and thresholding. In future work we seek to extend our current study by
considering this factor for the case of hybrid solutions. On the other hand, the search for the
optimal balance between the similarity measures used becomes essential, as we show in our
current study. Though some guidelines can be adopted in this task for specific cases, as we
propose, future work is required to achieve a general method for combining the approaches.

224 Xiao Chen et al.

References

[Bol6]

[CG16]

[Ch12]

[Ch18]

[CSG18]

[Eb18]

[EPIVO7]

[KAPI18]

[KRO8]

[Lel7]

[Mil3a]

[Mil3b]

[Mul8]

[PRS14]

[TVC13]

[Yo03]

Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T.: Enriching word vectors with subword
information. arXiv preprint arXiv:1607.04606, 2016.

Chen, T.; Guestrin, C.: Xgboost: A scalable tree boosting system. In: SIGKDD. ACM, pp.
785-794, 2016.

Christen, P.: Data matching: concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Science & Business Media, 2012.

Chen, X.; Rapuru, K.; Durand, G.; Schallehn, E.; Gunter, S.: Performance Comparison of
Three Spark-Based Implementations of Parallel Entity Resolution. In: DEXA-BDMICS.
volume 903. Springer, pp. 76-87, 2018.

Chen, X.; Schallehn, E.; Gunter, S.: Cloud-Scale Entity Resolution: Current State and
Open Challenges. OJBD, 4(1):30-51, 2018.

Ebraheem, M.; Thirumuruganathan, S.; Joty, S. R.; Ouzzani, M.; Tang, N.: Distributed
Representations of Tuples for Entity Resolution. PVLDB, 11(11):1454-1467, 2018.

Elmagarmid, A.; P. Ipeirotis, Panagiotis; Verykios, V.: Duplicate record detection: A survey.
TKDE, 19(1):1-16, 2007.

Kooli, N.; Allesiardo, R.; Pigneul, E.: Deep Learning Based Approach for Entity Resolution
in Databases. In: ACIIDS. Springer, pp. 3—12, 2018.

Kopcke, H.; Rahm, E.: Training selection for tuning entity matching. In: QDB/MUD. pp.
3-12, 2008.

Leipzig, Database Group: , Benchmark datasets for entity resolution, 2017. Downloaded
on 27.11.2017.

Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.: Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J.: Distributed Representations of
Words and Phrases and their Compositionality. Curran Associates, 2013.

Mudgal, S.; Li, H.; Rekatsinas, T.; Doan, A.; Park, Y.; Krishnan, G.; Deep, R.; Arcaute, E.;
Raghavendra, V.: Deep Learning for Entity Matching: A Design Space Exploration. In:
SIGMOD. ACM, pp. 19-34, 2018.

Pennington, J.; R. Socher, Riand Manning, Christopher: Glove: Global vectors for word
representation. In: EMNLP. pp. 1532-1543, 2014.

Tran, K.; Vatsalan, D.; Christen, P.. GeCo: An Online Personal Data Generator and
Corruptor. In: CIKM. ACM, pp. 2473-2476, 2013.

Yoshua, B.; Réjean, D.; Pascal, V.; Christian, J.: A neural probabilistic language model.
Journal of machine learning research, 3:1137-1155, 2003.

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 225

Fast Approximated Nearest Neighbor Joins For Relational
Database Systems

Michael Giinther! Maik Thiele! Wolfgang Lehner!

Abstract: K nearest neighbor search (kNN-Search) is a universal data processing technique and a
fundamental operation for word embeddings trained by word2vec or related approaches. The benefits
of operations on dense vectors like word embeddings for analytical functionalities of RDBMSs
motivate an integration of kNN-Joins. However, KNN-Search, as well as kNN-Joins, have barely been
integrated into relational database systems so far. In this paper, we develop an index structure for
approximated kNN-Joins working well on high-dimensional data and provide an integration into
PostgreSQL. The novel index structure is efficient for different cardinalities of the involved join
partners. An evaluation of the system based on applications on word embeddings shows the benefits
of such an integrated kNN-Join operation and the performance of the proposed approach.

Keywords: approximated nearest neighbor search, product quantization, RDBMS, word embeddings

1 Introduction

Word embedding techniques are powerful to study the syntactic and semantic relations
between words by representing them in dense vectors. By applying algebraic operations
on these vectors, semantic relationships such as word analogies, gender-inflections,
or geographical relationships can be easily recovered [LG14]. Due to the powerful
capabilities of word embeddings, some recent papers proposed their integration into
relational databases [BBS17, Giil8]. This allows exploiting external knowledge during
query processing by comparing terms occurring in a database schema with terms stored
in word embeddings. To give some examples: a user may query all products in a product
database and rank them according to their mean similarity to terms like “allergen” or
“sensitizer”. In the context of a movie database, a KNN-Search can be performed to return the
top-3 nearest neighbors of each movie title (see ¢; in Fig. 1). Given the movie “Godfather”
as input this might result in “1972” (the release year), “Scarface” (another popular movie
in the same genre) and “Coppola” (the director). Our main observation is that most of
these SQL database word embedding operations perform similarity search with k nearest
neighbor search (kNN) as a common subtask. Furthermore, the domain of the kNN-Search
often needs to be restricted to terms that also appear in the database relation, i.e. the domain
modeled by the database schema. In this way arbitrary terms, having their origins in the

! Technische Universitit Dresden, Institut for Systems Architecture, Dresden Database Systems Group, Nothnitzer
StraBe 46, 01187 Dresden, firstname.lastname @tu-dresden.de

@@ doi:10.18420/btw2019-15

https://creativecommons.org/licenses/by-nc/3.0/
firstname.lastname@tu-dresden.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-15

226 Michael Giinther, Maik Thiele, Wolfgang Lehner

« | 91: SELECT * q,:SELECT ml.title, m2.title
% FROM kNN (movies.title, 3) FROM movies ml kNN-Join (3)movies m2
] ON ml.title ~ m2.title
s WHERE ml.year= .. AND m2.genre IN (..)
1 Scarface 1972 [0,21;0,58; ..; -0,77]
g 2 Untouchables Brando [-0,46; 0,25; ...; 0,44]
.§ 3 Goodfellas + Ben Hur [0,76; 0,33; ... 0,91]
‘S 4 Ben Hur Copolla [0,76;0,48; ...; -0,51]
° . [-0,46;0,53; . 0,85]
108 Godfather Untouchables [0.86; -0,22; ..;0,12]
database table word embedding vector space
“» Godfather 1972 Godfather Scarface
§ Godfather Scarface Godfather Goodfellas)
N Godfather Copolla Godfather Untouchables Legend
query set R
Untouchables Connery Untouchables Goodfellas targetset T

Fig. 1: Two Example Queries: KNN-Search and kNN-Join

large text corpora on which the word embedding models have been trained on, are filtered
out. To give an example: if a KNN-Search is performed on an attribute movie titles the user
usually expects to get the most similar movies but not release years, actors, directors or
other terms that do not relate to the movie domain at all. Technically this boils down to a k
nearest neighbor join (kNN-Join) that combines each element in a query set R with the k
elements in a target set T that are closest to it. This is shown by ¢» in Fig. 1 that extends ¢,
by a target set containing just movie titles and that returns movie titles only. Due to the
high dimensionality of word embeddings (100 to 300 dimensions are a typical number)
and large input data sets (query and target set), the kNN-Join is an extremely expensive
operation. Therefore, we investigate approximation and indexing techniques based on vector
quantization approaches, especially product quantization [JDS11], to accelerate kNN-Joins
in the realm of RDBMSs. In particular, our contributions are the following:

. We identify two different kNN-Join query types with different needs regarding the
supporting index structures.

. We propose a novel index structure which can cope with both query types and is
flexible enough to deliver good performance on them.

. We detail how to efficiently process an approximated kNN-Join query that adapts to
different query and target set sizes.

. We provide a practical implementation of the operator and our optimizations in
PostgreSQL, which allows us to meaningfully evaluate the operator using high-
dimensional data and fully-featured SQL queries regarding both, accuracy and
runtime.

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 227

The remainder of the paper is structured as follows: In the next section, we define the
kNN-Join problem and derive the challenges which arise by supporting this operation on
high-dimensional data. In Sect. 3, we provide the fundamentals of the vector quantization
techniques which form the foundation for our proposed index structure. In Sect. 4, we
present our inverted product quantization index as well as our approximated and adaptive
kNN-Join implementation. Given two real-world datasets, we evaluate the accuracy and
response time of this novel operator regarding different input relation sizes in Sect. 5. Finally,
we survey the related work in Sect. 6 and conclude the paper in Sect. 7.

2 Problem Description

Given two vector sets R and 7 in a d-dimensional Euclidean space R and two elements
r and t, with r € R called query vectors and t € T called target vectors, a KNN query is
defined as follows:

Definition 2.1. The kNN query of r over T, noted kNN (r, T), can be defined as:
kNN(r,T) = argming, g eriv1 2i; d(rt).

Here d denotes the distance function between two elements. Typically, in the context of
word embeddings, the cosine distance is used. However, in case of normalized vectors r and
t, the cosine distance is proportional to the squared Euclidean distance. The normalization
of the vectors does not change the cosine distance. Thus the kN N(r, T') for any r and 7 can
be computed using both metrics. If the query is not just one element but instead a set, the
operation is denoted as kKNN-Join.

Definition 2.2. The kNN-Join between a query set R and a target set T is defined as:
KNN(R=T) = {(r,t)jt € kNN(r,T),r € R}.

Challenges The aim of this paper is to provide a kNN-Join which is particularly suitable
for high-dimensional data and varying target sets. In detail, we identify the following
challenges:

1. Batchwise execution of large query sets: In contrast to a simple kNN-Search, it must be
possible to execute large amounts of nearest neighbor queries at once for kKNN-Joins. Most
of the approximated kKNN-Search (ANN-Search) approaches assume that the set of target
vectors contains a very large number of vectors, however, they do not process large amounts
of query vectors. In the case of kNN-Joins, the number of queries can be much larger than
the target vector set.

2. High-dimensional data: Previous work on kNN-Joins for relational database systems
focuses mostly on low-dimensional data [YLK10]. Because of the curse of dimensionality,
the distances of pairs of sample vectors from a high-dimensional vector space tend to
differ only little [Be99]. Therefore, techniques for exact kNN-Joins, trying to hierarchical

228 Michael Giinther, Maik Thiele, Wolfgang Lehner

partition vector spaces, cannot be applied efficiently. Hence, the system must support suitable
approximated search techniques to handle large vector sets.

3. Adaptive kNN-Join algorithm: An index for the kKNN-Join stores all possible target
vectors. However, a target set 7 often contains just a small subset of all vectors in the
index. For example: target set for ¢, in Fig. 1 only contains vectors of movies published
in a specific year out of millions of other vectors. The kNN-Join algorithm therefore must
be adaptive to different target set sizes and should enable fast approximated search. With
respect to the cardinality of R and T we identified two different kKNN-Join query types in a
database system:

kNN queries with small query set R and large target set 7: This is the ordinary type of
kNN queries, which most of the kNN frameworks assume.

kNN queries with large query set R and small target set 7": This case is rather specific to
the use in database systems and is currently not supported.

4. Different demands on precision and response time: Regarding the approximation of
the vector similarity, it might be relevant for a user to specify how strongly the approximated
nearest neighbors should correspond with the exact values. On the contrary, real-world
systems need to comply with certain latency constraints, e.g., for exploratory data processing
fast response times are crucial. Consequently, the approximated kNN-Join should provide
features to configure such trade-offs. Providing this tunable trade-offs would also support
query execution in an online aggregation manner, i.e., get estimates of a KNN-Join query as
soon as the query is issued and steadily refine during its execution.

3 Vector Quantization

The index structure we propose is based on different vector quantization techniques.
Vector quantization is able to transform vectorial data in an approximated compact
representation [Gr84]. Furthermore, it enables fast approximated distance calculation which
subsequently can be used to speed up kNN-Join operations. It is the basis of product quanti-
zation as well as the basis for inverted indexing techniques described in Sect. 3.2 and Sect. 3.3.

3.1 Quantization Function

Vector quantization can be implemented by a quantization function ¢(y) which assigns a
vector y to a centroid ¢j € C where ¢; is the vector of C which has the lowest distance to
y. There are different ways to obtain such a quantization function, which is specified by
the centroid set C and a distance function d. As a distance function, we use the Euclidean
distance. The set C should be selected so that the distortion is minimal. The k-means
algorithm is commonly used to achieve this goal for a given number of centroids |C|. An
approximated representation of a vector dataset can be obtained by replacing every vector
y € Y (floating point values) with their centroid id j of its quantization centroid ¢; = g(y)
(integer values).

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 229

y= (12,1.4,-02, 13,-09,03, -1.1,0.1,0.7}
_Y—‘ “——v—‘ N —
uy(y) uz(y) U (Y)

Product
Quantization:

11,09,-05} {1.7,-08,01} {0.3,-0.1,0.7}

PQ-Sequence: 3 19 7

(a) Generating PQ sequences (b) Asymmetric Distance Calculation

Fig. 2: Product Quantization

3.2 Product Quantization

A simple vector quantization approach might lead to a quite inaccurate representation of
the vector dataset. For a more precise representation, huge numbers of centroids would
be necessary that are impossible to process or even to store. For this reason, product

quantization [JDS11] applies multiple quantizers on m subvectors u;(y), . . ., i, (y) of the
original vector y (see Fig. 2a.). Those quantizers are defined by quantization functions
qis ..., qm With g; : RY — C;. Typically, the cardinalities |C|,...,|Cy| are equal. The
product quantization is the sequence of centroids obtained by that process.
Voo Vds oo s YD=d)41s - - - YD = q1(U1(Y)), -+ -, g (Um(y)) ()
——— N—— —
ui(y) um(y)

Using a dictionary denoted as codebook, the sequence of centroid vectors can be compactly
represented as a sequence of centroid ids.

kNN-Search with PQ-Index Product quantization sequences can be utilized to accelerate
the calculation of nearest neighbors by providing a fast way to compute approximated
squared distances. Approximated square distances between a query vector X and a vector y
for which a product quantization sequence is available can be calculated by Eq. (2).

d(xy) =) dw(x), giwi(y)))? 2)
i=1

230 Michael Giinther, Maik Thiele, Wolfgang Lehner

Entry Coarse PQ Sequence

ID ID up o u3 Uy oy ID word Vector ID Centroid Vector ID Pos Sub Vector Centroid
4[2[3 4 1 | tee |11.78,3.22,-2.55,..] [1.89,2.42,-1.78, .1 | 10BN [1.80, -0.43]
[2 | 1213 2 | toast [[1.78,-1.35,0.45, ..] [3.78, -1.22, 2.55, ...] [-2.49, -1.89]
4[3[3]3 3 | coffee |[1.11,2.22,-2.01, ..] [-0.78, -3.28, -0.57, ...]
|4 | 1341 4 | eggs [[0.78,-0.72,5.12, ...] [4.17, 0.22, 2.24, ...] [1.07,3.22]
L] :

Index Data Original Vectors Coarse Quantizer PQ Codebook

Fig. 3: Index Data Structure

The squared distances d(u;(x), g; (u;(y)))> have to be precomputed at the beginning of
the search process. For every subvector u;(x) there are |C;| distance values to calculate,
since ¢;(u;(y)) can be any value of C;. The distance measure is denoted as asymmetric
by [JDS11], since it is defined between quantized and non-quantized vectors as visualized
in Fig. 2b. Despite the effort of the preprocessing the technique reduces the computational
costs, since the number of index entries in large vector datasets is much higher than m - |G|,
the number of those squared distances. Furthermore, the compact representation makes it
easier to provide fast access to the index entries which can also improve performance.

3.3 Inverted Index Structures for Approximated Nearest Neighbor Search

For the standard product quantization search, it is necessary to calculate |T'| distance values
for every query vector against the target set 7'. To reduce the number of distance computations
and achieve non-exhaustive search behavior one can divide the dataset into partitions of
vectors called cells which are locally close to each other. After that, only vectors which are
in the same cell as the query vector are considered as candidates for the nearest neighbors.
One can also extend the search to a certain amount of nearby cells. There are several ways to
define the cells: typically, vector quantization is employed by [JDS11] to build the so-called
IVFADC index. Here, a cell is defined by the subspace which the quantization function
assigns to the same centroid (Voronoi cell). In [BBS17] it is stated that either LSH or
k-means is used for that. Babenko et al. use product quantization [BL12] to build a fine
granular inverted index which is described in detail in Sect. 4.3.

However, these non-exhaustive methods prohibit the search in arbitrary subsets of the index
entries which is needed for smaller target sets 7. To give an example: if one queries only in
a cell of the vector space and the target set is small it is very likely that the index might
return an empty set of candidates. To solve this problem we propose an adaptive KNN-Join
algorithm which determines a suitable number of cells and provides multiple lookups.

4 Adaptive Search Algorithm for Approximated kNN-Joins

We propose an adaptive search algorithm for kNN-Joins which can cope with arbitrary
target sets 7. The index structure used by this algorithm is described in Sect. 4.1 and the

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 231

algorithm itself in Sect. 4.2. We employ the inverted multi-index described in Sect. 4.3
that is especially efficient for RDBMSs and propose an approach to estimate the number of
targets read out from the inverted index in Sect. 4.3 which is necessary to use it for different
target sets. The distance computation is outlined in Sect. 4.4. This is based on product
quantization as described in Sect. 3.2. However, for the adaptation to different cardinalities
of T, we employ a modification described in Sect. 4.5. Further optimizations are presented
in Sect. 4.6.

4.1 Index structure

The data structure of our proposed index for word vectors is shown in Fig. 3. Every index
entry in the Index Data table has an id to reference it (Entry ID). In addition, it consists
of a Coarse ID referring to a partition the vector belongs to for the inverted search and a
product quantization sequence (PQ Sequence). Every partition has a centroid which is stored
in the Coarse Quantizer table. The centroids of subvectors for the product quantization are
stored in a Codebook. Each of those PQ centroids has an ID which corresponds to codes
in the product quantization sequences and a position Pos € {1, ...m} which refers to the
position of the subvector it is calculated for (u1, . . ., u,,). The original vectors are stored in
aOriginal Vectors table.

4.2 Adaptive kKNN-Join Algorithm

Fig. 4a shows a flow chart and Fig. 4b the pseudo code of our proposed kNN-Join algorithm.
As input parameters, the algorithm gets a set of query vectors R = ry,...Iy, the set of
target vectors T represented as subset of index entry ids and the desired number k of nearest
neighbors. Furthermore, there are two configuration parameters: a and Thyg,,. The value «
determines the minimum number of targets per result that has to be considered for the search
process. A higher value of a leads to a higher precision of the result set. The value Thg,,
configures the calculation of distances with the product quantization which is discussed in
detail in Sect. 4.5. The algorithm consists of four steps: At first, there is a preprocessing step
(Line 3 to 6), which is necessary for the product quantization based distance calculation
described in Sect. 3.2. There are two different types of distance calculations via product
quantization based on either SHORT_CODES or LONG_CODES. The first one is suitable for large
numbers of distance calculations per query whereas the second one is applicable for fewer
distance calculations. Details are provided in Sect. 4.5. Thyg,, determines the limit of distance
calculation where the algorithm switches from LONG_CODES to SHORT_CODES, whereas the
distance calculations depends on « - k. The precomputed distance values of subvectors are
stored in D,,,. In the query construction step, the retrieval of database entries from the
inverted index is prepared. This involves the calculation of the coarse quantization C for
every query vector rj in Line 9 which returns a sequence of the coarse centroid ids from the
Coarse Quantizer table (see Fig. 3) in decreasing order according to the distance between

232 Michael Giinther, Maik Thiele, Wolfgang Lehner

R oL T Require:
Vi Selectivity:
Threshold Flexible-PQ: Thyey
1 Pre—‘ 1: function ApAPTIVE-KNN-JOIN(R, k, T, @)
processing 9 R —Rjel
¥ 3: if @ - k > Thy,, then > only for product quantization
(2) Query 4. Dpre < PREPROCESSING(R, T', SHORT_CODES)
Construction A S else
sqQL for rer‘;avi:::; 6: Dpre < PREPROCESSING(R, T', LONG_CODES)
Query query vectors R’ 7 while R’ + 0 do
8: forallr; € Rdo
9: C* «COARSEQUANTIZE(r})

10: w —ESTIMATEORDER(C, T, a - k - j)
11: centr(i) « {c € C | order(c) < w}

12: query <—CONSTRUCTQUERY(centr, T)
13: Tsup < EXECUTE(query)
‘ 14: R — {rj | [Ty ()] < @ - k}
(3) Data Retrieval 15: je2-7
‘ 16: forallr € R do
Enough 17: for all t € Ty,;, (i) do
Targets? Eevyyrrwrn 18: d —pisTFUNC(T;, t, Dprue)
enough results 19: UppaTE(top[ril, d)
results
. p—— 20: return fop;.
gla)l cl)ljlsattaigﬁe — * ordered list of centroid ids
(a) Flow Chart of Algorithm (b) Pseudo-Code of the Algorithm

Fig. 4: Adaptive kKNN-Join Algorithm

the coarse centroid and the query vector rj. Every centroid id corresponds to a partition in
the index. The number of partitions w to be considered is estimated by the ESTIMATEORDER
function (details are given in Sect. 4.3). Based on w and C the set of the centroids to be
retrieved from the index for r; is then added to centr(i). After that, a single SQL query is
constructed to retrieve the data for all query vectors from the index (data retrieval step,
Line 13). Then, the query vectors R’ for which not enough index entries could be retrieved
are determined. For them, another query construction and retrieval iteration is done with a
less conservative order estimation (modified by j). If the number of targets is sufficient,
the distance values between every query vector rj and its respective index entries Ty, (i)
are calculated by a distance function pistFunc ((distance calculation step). We elaborate
more on the distance function in Sect. 4.4. The best candidates for the kNN operation are
held in a sorted list fop; which is updated after every distance calculation.

4.3 Inverted Multi-Index and Partition Estimation

In Sect. 3.3 we described the advantages of inverted indexing for ANN. However, inverted
indexing in general is poorly suitable when the target set T is only a subset of all vectors

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 233

Vi oo Vie Vit 10 r Vaier Determine Coarse
= Quantization
) 2
€21 C22 C23

a C=cy,...,c
Qw0) o) 1 ,lll
1121314 w=

€11
_/. 215|678 Confidence(cy, ..., cuw, - k) Rfeturn Ceptroid Ids
< Peons w

@3] 9 101212

as (13|14 15[16 L Yes |
w

Partition IDs

Fig. 5: Inverted Multi Index Fig. 6: Confidence Estimation

in the index Ty, i.e. T < Tj. For this case it is not obvious how many partitions should be
considered. To solve this problem, we propose a method to estimate the number of targets
observed by the search when a certain number of partitions is read out from the index. This
allows us to pick the optimal number of partitions (Fig. 4b Line 11). To optimize the coarse
quantization step (Fig. 4b Line 9) we use an inverted multi-index [BL12] which enables fast
lookups even if large numbers of index partitions are needed.

Inverted Multi-Index A simple inverted index based on quantization could be created
by clustering all possible target vectors T} into n distinct partitions P{U. ..U P, which
corresponds to the Voronoi cells of the centroids ¢y, . . ., ¢,. To determine the partitions in
which to search for a query r, one has to calculate all the distances d(r,¢y), ..., d(r, ¢y).
However, this could be time-consuming for database queries with a large query set R. To solve
this problem, [BL12] propose to use product quantization to obtain more smaller clusters
for the partitions with only a few centroids. Suppose the product quantization sequences
which serve as labels for the partitions consist of two centroid indexes ci, ¢ € {1,...,n},
there are n> numbers of partitions (see Fig. 5). But, to determine the nearest clusters one
has to calculate only the 2 - n square distances between the subvectors of the query vector
centroids stored in a codebook. Subsequently, an order of centroids in accordance with the
distances to the query vector can be obtained by using the algorithm described in [BL12].
The data structure shown in Fig. 3 is designed for a simple coarse quantizer. If product
quantization according to the inverted multi-index is used, the coarse quantization table is
replaced by a second codebook relation and the ids ¢; and c¢; are represented by a single id
id. = ci-n+ cin Coarse ID.

Estimation of the Number of Targets The overall objective of the estimation (Fig. 4b
Line 10) is to determine a suitable number w < n of nearest partitions in a way, that the
probability P, that it is necessary to run further database requests for the query vector
rj is lower than a certain value 1 — P.oyr. This is done by iteratively incrementing w until
the confidence value obtained by a probabilistic model is higher than P, (see Fig. 6).
The estimation relies on statistics about the distribution of the index. Those contain the

234 Michael Giinther, Maik Thiele, Wolfgang Lehner

relative sizes of all partitions P4, . . ., P, compared to the whole index size (the total number
of vectors). For the estimation, we consider the set of all index entries 77, the target set
of the current query 7; and a set of partitions P{U...UP,, = T}, which are selected as
the partitions with the nearest centroids to the query vector. We then want to estimate
the probability 1 — P, that T; contains at least § = k - @ entries which corresponds to
the condition in the algorithm of Fig. 4b in Line 14. It corresponds to the cardinality of
T; U T,. For this purpose, we leverage a hypergeometric probability distribution (Eq. (3))
which describes the probability to get s successes by drawing M elements out of a set of N
elements without replacement. In our case, s is the desired number of targets in 7; U T),,
M is the cardinality of T, and N equals |T7|. The probability of drawing at least (3 target
vectors from the set 77 of all vectors in the index can be calculated with Eq. (4) by using the
cumulative distribution function.

()5

WX =55 1T T 1T,) = E 3)
|T; |
[1T, IT,1\ 1771 = 1T;]
=T -2 o= 2 . (1-=L). 22
ST Ty) T
p-1 (ITpl)(lTll—\Tp\)
N Ti|-s
1= Py = hey(B= 11 ITLITLIT 1) = 1= Y~ 2 @)

(|TI I)
5=0 T3

However, because of the complexity of the computation of the binomial coefficients, we
have to use an approximation based on the normal distribution Eq. (5). To obtain the
approximation, we use the mean y and the variance o~ from the hypergeometric distribution
(see Eq. (3)). In contrast to Eq. (3), which involves a cumulative distribution function, here,
the number k is a specific number of targets which corresponds to 7; U T),.

N(k;p0%) =

2
(k H)] 5)

“XP [202

1
V2ro?
The approximation of the probability of getting at least S — 1 targets (Eq. (6)) is then
obtained by its cumulative distribution function. The addition of 0.5 serves as a continuity
error correction. It is added to the formula since the hypergeometric distribution is a discrete
probability distribution. Since £ is an integer value, k < 8 — 1 corresponds to k < S —0.5.

B-1
hear(B= 1 0%) ~ 1= 3" N(s; pr.0) (©)
s=0
1 (B-1)+05-pu
~1- 5 . (1 +€Yf(T))

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 235

The probability A4 of getting enough targets can be increased by raising the number of
partitions in 7}, which corresponds to the coarse order w in the algorithm in Line 10 of
Fig. 4b. The algorithm chooses w in a way that it is minimal and /.y is higher than a certain
probability P.,,r which is also termed as the confidence value. From experimental results,
we noticed that 0.8 seems to be a good value to achieve high response time for the algorithm.

4.4 Distance Calculation

Beside the adaptive number of partitions and vectors to be considered by the kNN-Join
algorithm, the trade-off between precision and runtime also depends on the distance function,
namely: (1) exact calculation, (2) product quantization and (3) product quantization with
post verification. Product quantization is the fastest one but also provides the lowest precision.
It calculates distance values as described in Sect. 3.2. The exact calculation is too slow,
especially for a large number of target vectors and a large a. Method (3) strikes a balance
between both extremes and therefore represents the default distance function. In the first
place it calculates the approximated distance values using product quantization for k - «
targets. Second, it refines the k - pvf best candidates with the exact method to obtain the
final top-k. Here, the post-verification factor pvf is the major factor which influences the
precision of the kNN computation. By adjusting it the user can control the trade-off between
precision and runtime as desired in Challenge 3 of Sect. 2. For further details see the
evaluation in Sect. 5.2.

4.5 Flexible Product Quantization

The product quantization index provides two parameters: the number of subvectors m and
the number of centroids per quantizer |C|. The optimal setting of both parameters depends
on the desired precision and response time as well as on the typical number of distance
calculations « - k which are performed for every query vector. In general, higher values of
m and |C| correspond to higher precision and higher response times.

If the target set size « - k is large, the computation of the distances (Line 18) is the most
time-consuming step whereas for small target sets, the computation time of the preprocessing
step (Line 3) becomes more and more prevalent. Since a low value for m, i.e. a low number
of subvectors, corresponds to a faster distance calculation, the product quantization speed
for large target sets depends mainly on m. However, with a decreasing number of vectors
a - k, the preprocessing step (Line 3) has also a high computational effort which is mainly
influenced by |C|. A decreasing number |C| corresponds to a faster search process.

To be efficient in both situations, we introduce a flexible product quantization search
procedure. For product quantization search with a small number of distance calculations
« - k < Thg,y an index is created with a large number of subvectors m = 2 - m’ but only a
small number of centroids |C| (see 4). This is called the LONG_CODES mode, since the pq
sequences consist of a larger number m of ids. For a larger number of distance calculations,

236 Michael Giinther, Maik Thiele, Wolfgang Lehner

the number of distances to sum up for each distance calculation (see Eq. (2)) can be reduced
by precalculating squared distances for pairs of centroids {¢j, ¢j+1) and pairs of subvectors
(uj(r), uj1(r)) (Sect. 4.2):

d(uj(r), uj1 (), (¢, €je1))? = d (uj (1), qj i (y))* + d (u; (0), gjs1 (w21 (¥))) (7)
where = ¢ = q;(u;(¥)), Cjs1 = qj+1(j21(¥)), j € {2 - ili € N)

The distance calculation can then be expressed by the following equation:

d(r,y)* = Z d((uzj—1 (1), uzj (1)), (€241, €2j))* ®)
=1

To efficiently calculate this, the product quantization sequences consisting of m numbers
can be transformed into sequences of m’ = % numbers. Therefore, all centroid id pairs
(id(¢;), id(cj+1)) can be transformed into single ids:

id(¢j, ¢j+1) = id(¢j) - |C| + id(¢j11))

This is called the SHORT_CODES mode. For a kNN-Join, this transformation process has to be
done only once irrespective of the number of queries (see Fig. 4b Line 3 to 6). Optimal
settings for the threshold Thy,, are discussed in Sect. 5.4.

4.6 Optimizations

Target List for Product Quantization Search A naive way of doing the distance calculation
via product quantization might be to calculate the distances directly by iterating through
the targets instead of collecting the targets as it is done in Fig. 4b in Line 13. However, to
execute product quantization efficiently it is important that the precomputed distances stay
in the cache. Since the precomputed distances are specific for the query, it is necessary to
collect all product quantization sequences and assign them to the query vectors in the first
place. Afterward, the distance computation can be done query-wise. So, all precomputed
distances specific for a query can stay in the cache. Moreover, the approach of [AKLS15]
could be used to further improve memory locality to speed up the product quantization
search. Thereby, product quantization sequences are compressed to fit into SIMD cache
lines.

Prefetching As stated in Sect. 4.4, we collect the targets in Line 13 of the search algorithm
(Fig. 4b) and assign them to the query vectors they should be compared to. This requires a
lot of random memory accesses to the lists of targets. To speed up this step, we prefetch
the target list entries which has to be updated next from time to time. We tested the effect
of the prefetching with our algorithm on a query with 10,000 queries and 100,000 targets
(300-dimensional vectors) and @ = 100 and k = 10. For this query the construction time
of the target list could be reduced by ~ 35%, from 1.4 seconds to 0.9 seconds. For more

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 237

details about that one can take a look at the code3.)

Fast Top-K Update In Line 19 of the algorithm in Fig. 4b the top, gets updated after every
distance calculation. If the distance value is lower than every other index entry, the new
index entry has to be inserted into this array of current nearest neighbors. However, this can
be time-consuming since every other array element with a larger distance has to be moved.
For a large fop;, the updates can be accelerated by first adding new candidates in a buffer. If
this buffer gets full or all distance calculations are done, all candidates are added to the fop;,
in one run. This is in particular useful if post verification (see Sect. 4.4) should be done
and thus a large set of candidates is required in the first place. Alternatively, one can use a
linked list instead of an array for the fop; . However, linked lists are space consuming which
could become a problem for large query sets.

5 Evaluation

In this section, we first evaluate our adaptive kNN-Join implementation for varying post-
verification factors and « values and compare them to the basic batch-wise product
quantization approach (see Sect. 5.2). Moreover, we provide a detailed runtime investigation
for the different sub-routines of the kKNN-Join given different query and target set sizes
(Sect. 5.3). The impact of short and long code sizes on the precomputation and distance
calculation is shown in Sect. 5.4. In Sect. 5.5, we finally evaluate the accuracy of the target
size estimator that was presented in Sect. 4.3.

5.1 Experimental Setup

We use two different datasets of word embeddings to evaluate our approach, the popular
Google News dataset* which is trained with the word2vec [Mil3] skip gram model and a
dataset trained on data from Twitter> with GloVe [PSM14]. We use python scripts to create
the index structures for these datasets as shown in Tab. 1. The kNN-Join, that can be used
for queries similar to the example in Fig. 1, is implemented as a user-defined function.

The index consists of entries with an entry_id and a product quantization sequence as
well as a codebook storing the centroids. As a baseline, we use the exhaustive product
quantization search as described in [JDS11], which can easily generalized to a kNN-Join
operation. Basically, it makes no use of inverted indexing and thus calculates approximated
distance values between any query vector in R and any target vector in 7' to determine
the kNN results. The method can simply reuse the index data table and the codebook of
our adaptive index (Page 6 Fig. 3) while ignoring the Coarse ID column. To make the
comparison fair we implemented a batch-wise search algorithm as UDF, like it is done for the

3 https://github.com/guenthermi/postgres-word2vec/blob/master/freddy_extension/ivpg_search_in.c
4 https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTT1SS21pQmM/edit?usp=sharing, last access: 15.08.18
5 https://nlp.stanford.edu/projects/glove/, last access: 15.08.18

https://github.com/guenthermi/postgres-word2vec/blob/master/freddy_extension/ivpq_search_in.c
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
https://nlp.stanford.edu/projects/glove/

238 Michael Giinther, Maik Thiele, Wolfgang Lehner

Google News (GN) Twitter (TW)

Size 3, 000, 000 1,193,514
Dimensionality 300 100

Coarse Centroids 2-32 220

Product Quantization m=30, |[C|*=32 m=10, |[C|*=32
Confidence Peons = 0.8 Peonr = 0.8
Threshold (For Flexible Product Quantization) Thyex = 15,000 Thyex = 15,000

* number of centroids for each quantizer

Tab. 1: Dataset and Index Characteristics

0.5 e
0.8 4
- o}
watl 0.4 g
G 06 D 5
% @03
O O
o 802
a =]
o a a
0.2 0.1
0 5 10 15 20 S 4 6 8
Response Time in Seconds Response Time in Seconds
(a) Google News (b) Twitter

W Baseline a=200 Ha=3800 o PQ —+-PQ+PV
W a=400 o=1000 o Exact

Fig. 7: Evaluation of Execution Time and Precision

adaptive search algorithm. To enable repeatability we have published the implementation®.
The machine we run the evaluation on is a Lenovo ThinkPad 480s with 24GB main memory,
an Intel i5-8250U CPU (1.6GHz) and a 512GB SSD. The computation runs only on a single
core in a PostgreSQL instance on a Ubuntu 16.04 Linux System.

5.2 Influence of Index Parameters on Precision and Execution Time

In Fig. 7, the execution time and precision curves for different o values and increasing pvf
values are shown. All the kKNN-Joins are executed on 5,000 query and 100,000 target vectors
with £ = 5. The post verification factors used for the computation are 10, 20, . . ., 100. The
precision is determined by calculating the amount of nearest neighbor results of a query
vector which concur with the exact results relative to the number of k. Since doing the exact

6 https://github.com/guenthermi/postgres-word2vec

https://github.com/guenthermi/postgres-word2vec

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 239

calculation for all query vectors of a kKNN-Join is very time-consuming, we draw bootstrap
samples of the query vectors of size 100 to derive an estimation of the actual precision
value by determining the precision of the samples results. The measurements for every
configuration are done 20 times and the median values are determined. The value of « - k is
always lower than Thy,,. Thus, the LONG_CODES method is used.

As one can see, for most of the chosen values of pvf and « the adaptive search with
PQ distance calculation has the shortest execution time and also outperforms the product
quantization baseline method in terms of precision and runtime. Join operations with
exact distance calculation have significantly longer execution times than the other methods,
however achieving the highest precision value. Nevertheless, the post verification might be
the better choice in most of the cases, since it achieves high precision values while being
much faster than the exact computation. For increasing values of pvf the execution time, but
also the precision generally increases. Regarding the a values, one can also observe that
higher values lead to higher precision values at the expense of execution time.

The post verification method is significantly slower than the product quantization method,
even though pvf has a low value. This is the case since the use of post verification requires
to at least calculate k exact distance values for each query vector. Furthermore, it needs to
retrieve the raw vector data for every target vector which has to be considered for distance
calculation. Moreover, it is necessary to hold these vectors in memory until the distance
computation starts. During the distance computation, the vectors of the currently best
candidates have to be stored together with the product quantization sequences in a separate
TopK list to apply the post verification step later. For high values of pvf, on one hand, the
post verification step gets time-consuming while on the other hand more updates of the
TopK lists are required during the distance calculation step.

5.3 Performance Measurements

We evaluate the performance of the search algorithm by measuring the execution time of
certain subroutines of the algorithm denoted by numbers 1 to 4 in Fig. 4a. This is done
for different cardinalities of query sets R and target sets T. The query and target vectors
are sampled from the whole set of word embeddings of the Google News dataset. The
results of our measurements are shown in Fig. 8 for different values of |R| and |T|. For
the measurements we set @ = 100, pvf = 10 and used a fixed target set size of 10,000
while increasing |R| and a query set size of 10,000 while increasing |7'|. All measurements
are done five times and the average value is determined. The distance computation time
increases with the query set size as well as with the number of target vectors. The query
construction time only increases with an increasing query set size. If the query set size is
fixed the query construction time slightly decreases with increasing target set size because a
higher number of partitions has to be determined for every query vector in case the number
of targets is very low. The main effort during the query construction is the calculation of
the coarse quantization for every query vector. Since this process does not change with
the number of target vectors, the execution time is rather constant. The data retrieval time

240 Michael Giinther, Maik Thiele, Wolfgang Lehner

Product Quantization with Post

Product Quantization Exact Distance Calculation it
Verification

Increasing Query Set Size
Time in Seconds
Time in Seconds
Time in Seconds

02 | 04 —

Increasing Target Set Size
Time in Seconds
{
Time in Seconds “
Time in Seconds
\

=% o e s o & o < — 02 -
et P

o o a—"— o
5k 10k sk 20k 25k 30k sk 10k sk 20k 25k 30k sk 10k sk 20k 25k 30k

Fig. 8: Time Measurement for increasing sizes of query set R and target set 7’

effort is nearly constant for an increasing number of query vectors while its execution time
increases if the target vector set grows. The preprocessing has to be done per query vector.
Therefore only the query set size influences its execution time.

5.4 Flexible Product Quantization

Flexible product quantization (Sect. 4.5) can adjust the product quantization distance
calculation to smaller or bigger sets of vectors. The product quantization sequences in our
index structure for the Google News dataset consist of codes ¢; € {0,...,31} of length 30
which can be combined to shorter codes clf € {0,...,1023} with length 15. The overall
execution time of a kNN-Join with product quantization distance calculation is shown
for both methods in Fig. 9a. Fig. 9b shows the execution times for the precomputation
and distance calculation step. We use query sets of size 5,000. The target set size |T| is
shown on the x axis. The value « is set to % The measurements are done 10 times with
randomly sampled query and target vectors and average values are determined. For small
target sizes with |T'| < 20, 000 the computation via long codes is faster. For larger target
sets the overhead of the distance calculation for long codes becomes prevalent such that the
calculation with short codes is faster.

5.5 Accuracy of the Target Size Estimation

The number of targets determined in the retrieval step of the algorithm before the distance
calculation can be estimated. For this purpose we leverage an approximation of the

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 241

N
S

~-Short Codes --Short Codes Precomputation
--Long Codes

<-Short Codes Distance Computation
~-Long Codes Precomputation
- Long Codes Distance Computation

v
I

Time in Seconds
>
Time in Seconds
>

w

10k 20k 30k 40k 50k 10k 20k 30k 40k 50k
Target Set Size Target Set Size
(a) Execution Times of Both Methods (b) Precomputation and Distance Computation

Fig. 9: Evaluation of Short and Long Codes Calculation

hypergeometric distribution as described in Sect. 4.3. The estimated number of targets
derived from the index is y as defined in Eq. (3). In Fig. 10a, a scatter plot of the estimated
and actually derived number of targets is shown. For these measurements, kKNN-Joins with
a single randomly sampled query vector are executed and the number of targets obtained in
the first retrieval step is determined inside the user-defined function. This was done for all
a € {l1,...,100}, k = 5 and target sets of size [T| = 1, 000. For each « value 10 queries are
executed. The divergence of the estimation is higher if the desired number of targets per
query vector gets higher. This can be noticed in the 4th-grade polynomial regression curve
of the sample points in Fig. 10b. However, if the number of desired targets is near to |T'| it is
apparently decreasing.

To prevent the system from executing a lot of database queries, one can adjust the confidence
value P.,,r. It represents how likely it is that only one database request is sufficient to
derive the desired number of targets from the index. This was also evaluated by single query
kNN-Joins with @ = 10 and the same search parameters as in the last experiment. The
amount of queries where the condition is true (only one request was required) in relation to
Peons is shown in Fig. 10c. For each confidence value Po,r € {0.05 70 = 1,...,20} 1,000
queries are executed. As desired, the amount of queries where the condition is true rises up
to 100%, if the confidence value increases up to 1. However, the actual confidence is quite
higher than Py, since the confidence can only be increased step-wise by incrementing w.

6 Related Work

There is already limited work done in integrating kNN operations in database systems.
For instance, PostgreSQL can be extended by PostGIS [Po18] which allows running kNN
queries for low dimensional (geographical) data. Index structures can be created with
GiST (Generalized Search Trees) to speed up such operations. An integration of vector
similarity search for high dimensional data into Spark has been done by [BBS17] for
word embeddings. Here, LSH [Ch02] or spherical k-means [DMO1] is used to partition

242 Michael Giinther, Maik Thiele, Wolfgang Lehner

1000

800

Real Value

Divergence Absolute
Condition Valid in %

0 200 400 600 800 1000 0 200 400 600 800 1000 0 02 04 06 08 1

Prediction Prediction Confidence P,,s

(a) Estimated Size Values (b) Divergence (Absolute) (c) Confidence
Fig. 10: Estimation of Target Set Size

vectors for filtering. However, the actual distance calculation might be done with exact
methods. We proposed FREDDY [Giil8] which supports approximated kNN queries
for high dimensional data, however, can not efficiently execute kKNN-Join operations. A
system called ADAM,,,, [GAKS14] adds approximated kNN-Search techniques on top of
a database system for multimedia retrieval. Furthermore, also approximated kNN-Joins
are already integrated into a relational database system by [YLK10]. However, this is only
applicable for low dimensional data. This work differs from previous work in the way that
it employs state-of-the-art approximated nearest neighbor search techniques to support
approximated kNN-Joins also for high dimensional data. To do so several modifications and
optimization specific for kNN-Joins in RDBMSs have been done.

Approximated Nearest Neighbor Search The difficulty to find the nearest neigh-
bors especially in high dimensional vector spaces has led to the development of several
kinds of approaches for approximated nearest neighbor (ANN) search. However, not
all of them are applicable for kKNN-Join operations in RDBMSs. On one hand, recently
graph-based methods are developed [Hall] which are fast, however, do not allow online
index updates. On the other hand, there are so-called cell probe methods which divide the
search space into several cells. One of the most popular ones E2LSH [Da04] applies locality
sensitive hashes (LSH) to achieve such a partitioning. Jegou et al. [JDS11] employ product
quantization for partitioning. Additionally, their approach can be combined with inverted
indexing similar to [SZ03] for even faster search. One advantage of product quantization
is, that it is easy to add vectors during runtime in an online update manner which is
particularly useful for the application in relational database systems. Thus, we based our
index on such quantization techniques. In the context of word embeddings, vectors for text
values of multiple tokens can be added during runtime by an averaging method [CJ15]. For
such updates, the quantizations of the new vectors have to be calculated. Vectors can be
removed by simply deleting the quantization entries from the index. For frequent inserts
and deletions, the online product quantization approach proposed by [XTZ18] suggests

Fast Approximated Nearest Neighbor Joins For Relational Database Systems 243

updating the centroids of the quantizer functions. In this way, the index can react to context
drifts of its containing data.

7 Conclusion

We propose a novel index structure for approximated kNN-Joins on high dimensional data
which is flexible enough to deliver good performance on different cardinalities for query
and target vector set. It enables non-exhaustive search for different target sets. We have
shown that the proposed index structure can achieve faster response times than product
quantization as an instance of a state-of-the-art exhaustive search method. We provide a
practical implementation of the operator and our optimizations in PostgreSQL.

Future Work By adjusting the post verification factor pvf one can influence the
precision and response time of the kNN-Join. However, there are further search parameters,
in particular @, which have an influence here. It might be hard for a user to find out
which parameter configuration leads to a specific precision and response time. Thus, an
oracle which can provide the optimal parameters to achieve a good precision by fulfilling
constraints regarding the execution time would improve the usability of the system.

Acknowledgments

This work is funded by the German Research Foundation (DFG) within the Research
Training Group “Role-based Software Infrastructures for continuous-context-sensitive
Systems” (GRK 1907) and by the Intel® AI Research.

References

[AKLS15] André, Fabien; Kermarrec, Anne-Marie; Le Scouarnec, Nicolas: Cache Locality is Not
Enough: High-performance Nearest Neighbor Search with Product Quantization Fast
Scan. Proc. of the VLDB Endowment, 9(4):288-299, 2015.

[BBS17] Bordawekar, Rajesh; Bandyopadhyay, Bortik; Shmueli, Oded: Cognitive Database: A
Step towards Endowing Relational Databases with Artificial Intelligence Capabilities.
CoRR, abs/1712.07199, 2017.

[Be99] Beyer, Kevin; Goldstein, Jonathan; Ramakrishnan, Raghu; Shaft, Uri: When Is “Nearest
Neighbor” Meaningful? In: Proc. of the 7th International Conference on Database Theory.
Springer, pp. 217-235, 1999.

[BL12] Babenko, Artem; Lempitsky, Victor: The Inverted Multi-Index. In: 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, pp. 3069-3076, 2012.

244 Michael Gilinther, Maik Thiele, Wolfgang Lehner

[ChO02]

[CJ15]

[Da04]

[DMO1]

[GAKS14]

[Gr84]
[Giil8]

[Hall]

[JDS11]

[LG14]

[Mil3]

[Po18]
[PSM14]

[SZ03]

[XTZ18]

[YLK10]

Charikar, Moses S: Similarity Estimation Techniques from Rounding Algorithms. In:
Proc. of the 34th Annual ACM Symposium on Theory of Computing. ACM, pp. 380-388,
2002.

Campr, Michal; JeZek, Karel: Comparing Semantic Models for Evaluating Automatic
Document Summarization. In: International Conference on Text, Speech, and Dialogue.
Springer, pp. 252-260, 2015.

Datar, Mayur; Immorlica, Nicole; Indyk, Piotr; Mirrokni, Vahab S: Locality-Sensitive
Hashing Scheme Based on p-stable Distributions. In: Proc. of the 20th Annual Symposium
on Computational Geometry. ACM, pp. 253-262, 2004.

Dhillon, Inderjit S; Modha, Dharmendra S: Concept Decompositions for Large Sparse
Text Data Using Clustering. Machine Learning, 42(1-2):143-175, 2001.

Giangreco, Ivan; Al Kabary, Thab; Schuldt, Heiko: ADAM - A Database and Information
Retrieval System for Big Multimedia Collections. In: 2014 IEEE International Congress
on Big Data. IEEE, pp. 406413, 2014.

Gray, Robert: Vector Quantization. IEEE ASSP Magazine, 1(2):4-29, 1984.

Giinther, Michael: FREDDY: Fast Word Embeddings in Database Systems. In: Proc. of
the 2018 International Conference on Management of Data. ACM, pp. 1817-1819, 2018.

Hajebi, Kiana; Abbasi-Yadkori, Yasin; Shahbazi, Hossein; Zhang, Hong: Fast Approxi-
mate Nearest-Neighbor Search with k-Nearest Neighbor Graph. In: Proc. of the 22nd
International Joint Conference on Artificial Intelligence. volume 22, p. 1312, 2011.

Jegou, Herve; Douze, Matthijs; Schmid, Cordelia: Product Quantization for Nearest
Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1):117-128, 2011.

Levy, Omer; Goldberg, Yoav: Linguistic Regularities in Sparse and Explicit Word
Representations. In: Proc. of the 18th Conference on Computational Natural Language
Learning. pp. 171-180, 2014.

Mikolov, Tomas; Sutskever, Ilya; Chen, Kai; Corrado, Greg S; Dean, Jeff: Distributed
Representations of Words and Phrases and their Compositionality. In: Advances in Neural
Information Processing Systems. pp. 3111-3119, 2013.

PostGIS, postgis.net, Last Access: 06.09.2018.

Pennington, Jeffrey; Socher, Richard; Manning, Christopher D.: GloVe: Global Vectors for
Word Representation. In: Empirical Methods in Natural Language Processing (EMNLP).
pp. 1532-1543, 2014.

Sivic, Josef; Zisserman, Andrew: Video Google: A Text Retrieval Approach to Object
Matching in Videos. In: Proc. of the 9th IEEE International Conference on Computer
Vision-Volume 2. IEEE Computer Society, p. 1470, 2003.

Xu, Donna; Tsang, Ivor; Zhang, Ying: Online Product Quantization. IEEE Transactions
on Knowledge and Data Engineering, 2018.

Yao, Bin; Li, Feifei; Kumar, Piyush: K Nearest Neighbor Queries and kNN-Joins in Large
Relational Databases (Almost) for Free. In: 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010). IEEE, pp. 4-15, 2010.

Machine Learning

T. Grust et al. (Hrsg.): Datenbanksysteme fiir Business, Technologie und Web (BTW 2019),
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2019 247

In-Database Machine Learning: Gradient Descent and
Tensor Algebra for Main Memory Database Systems

Maximilian Schiile! Frédéric Simonis? Thomas Heyenbrock? Alfons Kemper?
Stephan Giinnemann? Thomas Neumann®

Abstract: Machine learning tasks such as regression, clustering, and classification are typically
performed outside of database systems using dedicated tools, necessitating the extraction, transfor-
mation, and loading of data. We argue that database systems when extended to enable automatic
differentiation, gradient descent, and tensor algebra are capable of solving machine learning tasks
more efficiently by eliminating the need for costly data communication.

We demonstrate our claim by implementing tensor algebra and stochastic gradient descent using
lambda expressions for loss functions as a pipelined operator in a main memory database system. Our
approach enables common machine learning tasks to be performed faster than by extended disk-based
database systems or as well as dedicated tools by eliminating the time needed for data extraction. This
work aims to incorporate gradient descent and tensor data types into database systems, allowing them
to handle a wider range of computational tasks.

1 Introduction

Applications in the increasingly important domains of machine learning, data mining, and
statistical analysis often use multi-tier architectures. This needlessly impedes the knowledge
discovery process by separating data management from the computational tasks. The lowest
tier consists of a database system that, often undervalued and considered as a basic data
storage, typically uses SQL as established unified declarative data manipulation language.

When analyzing a taxi dataset, the database system continuously receives tuples containing
taxi trip data. The data then has to be extracted so it can be analyzed in tools like Caffe,
MATLAB, R, Spark, TensorFlow, or Theano. Even disregarding the various interfaces
involved, we cannot avoid the expensive extract, transform, load (ETL) process needed to
pull the data out of the data management tier. As modern main memory database systems—
which combine online analysis processing (OLAP) and online transactional processing

Ity Munich, Chair for Database Systems, Boltzmannstrale 3, 85748 Garching, m.schuele @tum.de

2TU Munich, Chair for Database Systems, BoltzmannstraBe 3, 85748 Garching, simonis@in.tum.de

3TU Munich, Chair for Database Systems, Boltzmannstrale 3, 85748 Garching, thomas.heyenbrock @ tum.de
4TU Munich, Chair for Database Systems, Boltzmannstrale 3, 85748 Garching, kemper @in.tum.de

5 TU Munich, Chair for Database Systems, BoltzmannstraBe 3, 85748 Garching, guennemann @in.tum.de
6TU Munich, Chair for Database Systems, BoltzmannstraBe 3, 85748 Garching, neumann@in.tum.de

©@@®@®@ doi:10.18420/btw2019-16

https://creativecommons.org/licenses/by-sa/4.0/
m.schuele@tum.de
simonis@in.tum.de
thomas.heyenbrock@tum.de
kemper@in.tum.de
guennemann@in.tum.de
neumann@in.tum.de
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/btw2019-16

248 Maximilian Schiile et al.

(OLTP) [FKN12]—already allow data mining beside real time analysis, the integration of
machine learning algorithms represents the next step of moving computation to the data.

Modern machine learning essentially transforms data in tensors until a loss function is
applicable. These machine learning models are to the vast majority trained using gradient
descent. We believe that integrating a gradient descent optimizer in the database system
will encourage data scientists to perform more computational tasks within database systems.
In the taxi data example, a gradient descent operator would allow online optimization using
the latest data as soon as it is received without the need to extract or transfer it.

The main contribution of this work is to provide an architectural blueprint for integrating
gradient descent into modern main memory database systems. To achieve that, we need an
automatic differentiation framework, an architecture for fitting the optimizer into a database
system’s query plan, a tensor data type, and a user-friendly language extension. We design
gradient descent as a new relational operator that uses SQL lambda functions [Pal7] to
specify model functions. When extending SQL, an already standardized and established
language, by gradient descent and tensor algebra, we only require one new operator and one
new data type, enabling existing database systems’ interfaces to be reused without the need
of learning a new language.

The rest of this paper is structured as follows: First, after summarizing the existing research,
we describe our automatic symbolic differentiation framework and the gradient descent
operator together with the proposed tensor algebra to be integrated into database systems.
Having implemented these operators, we then explain how they can be used for machine
learning tasks. Finally, we compare the performance of our enhanced database management
system with that of other machine learning systems using the Chicago taxi rides dataset.

2 Related Work

This section describes current state-of-the-art machine learning tools, which will provide
a baseline in the later evaluation, as well as similar automatic differentiation and parallel
gradient descent frameworks, and the current state of research on moving data analytics
into database systems, which we continue in this work.

Dedicated machine learning tools, such as Google’s TensorFlow [Ab16] and Theano [Bal2],
support automatic differentiation to compute the gradient of loss functions as part of their
core functionality. As they are external to the database system, they require the extraction
and transfer of data. To integrate gradient descent, we only need the automatic differentiation
component of the tools. Here, we use TensorFlow’s expression tree for loss functions as a
reference for the automatic gradient differentiation. Also, we use TensorFlow as a baseline
in our experiments.

Automatic differentiation methods can be divided into numeric (approximating the derivative)
or symbolic differentiation; that again can be split into forward and backward accumula-

In-Database Machine Learning: Gradient Descent and Tensor Algebra 249

tion [BPR15] depending on the direction in which the chain rule is applied. As existing
gradient differentiation tools do not allow for tensor derivatives, Laue et. al. [LMG18]
proposed a framework for automatically differentiating higher order matrices and tensors.
This is based on the Ricci calculus and allows both forward and backward accumulation.
The framework was built with the same aim as ours but—as their source code has not been
published—we had to prototype a similar one.

If database systems are to support tensor derivatives, they will need a tensor data type. The
work of Luo et al. [Lul7] integrated linear algebra based on matrices and vectors into a
relational database system in the way we need. It demonstrated database systems to be an
“excellent platform® for distributed and scalable computations and also that integrated array
or matrix data types are superior to their table representations. To execute linear algebra in
database systems, Kernert [Ke16] deeply integrated linear algebra functionalities into an
in-memory database system and adapted dense and sparse matrices to a column-oriented
storage layer.

The MADIib [He12] analytics library extends existing database systems such as PostgreSQL
to perform data mining and statistics tasks. It provides a matrix data type and table functions
for linear and logistic regression, which we use as another baseline. EmptyHeaded [Ab17]
and HyPer [Pal7] integrate data mining algorithms into database systems as operators.
Whereas EmptyHeaded compiles algorithms and relational algebra together, HyPer provides
data mining operators as part of its relational algebra. This work extends its relational algebra
for machine learning. Another architecture for scalable analytics is XDB [Bil4] that unifies
transaction guaranties from database systems, partitioning, and adaptive parallelization
strategies for analytical workloads. Vizdom [Cr15] is an interface for Tupleware [CGK14]
for visually sketching machine learning workflows. Both approaches also intend to combine
the benefits of database and of analytics systems.

For the vision of a declarative framework for machine learning, Kaoudi et al. [Kal7] adapt
database systems’ optimizers for gradient descent computation. Using a cost function it
chooses a computation plan out of stochastic, batch, or mini-batch gradient descent. Another
notable automatic differentiation framework is Hogwild [Re11]. It presents an approximative
way of lock-free parallel stochastic gradient descent without synchronization.

3 In-Database Gradient Descent

This paper’s main contribution is to present a gradient descent operator that can be used
within a database system to reduce data transfers. This means we need a way to represent
loss functions in SQL, so we first introduce some necessary mathematical background and
define the terms used in our implementation. As well as integrating the resulting operator
into the query plan, we also need a framework for computing the gradient of a given loss
function, so we introduce our prototype framework for automatic gradient differentiation
based on partial derivatives. We conclude by integrating gradient descent into the relational

250 Maximilian Schiile et al.

algebra via two operators, one for gradient descent (used for the training dataset) and one
for labeling (used to label test datasets). Finally, we demonstrate how these operators fit into
the pipeline concept used by modern database systems.

3.1 Mathematical Background

Many machine learning tasks can be expressed as minimizing a mathematical function.
Parametrized model functions m;(X) such as linear combination are used to predict the
label y (on data X and weights w with m elements each). A loss function Ix (W) measures
the deviation (residual) on all n datasets X of the predicted values my(X) from the actual
labels ¥, for example, mean least squares:

my(X) = in *Wp Ry,
iem
L1 L
Ix 5(w) = - Z(mv*v(xi) - i)
ien
Gradient descent, a numerical method, finds the loss function’s minimum by moving in
the direction of the steepest descent, which is given by —VIx 5(). Starting with arbitrary

initial weights wy, each step updates these values by the gradient, multiplied by the scaled
learning rate «, until the minimum is reached:

- - a -
Wiel = Wi = — Vix 5(wi),

Q

Weo & {Wlmin(ly 5())}.

Batch gradient descent considers all tuples X € X per iteration step, whereas stochastic
gradient descent takes one tuple for each step:

Iz (W) = (mg(3) = y)%,

-

- a -
Wiel = Wi — — % Viz (W)

3.2 Automatic Gradient Differentiation

As we need an automatic differentiation framework to compute the gradients, we develop
a framework for automatic tensor differentiation based on expression trees. Our database
system uses this as the computational core of the gradient descent operator but is also suited
for other applications. For that purpose, we have made the source code online’.

7https://gitlab.db.in.tum.de/MaxEmanuel/autodiff

https://gitlab.db.in.tum.de/MaxEmanuel/autodiff

In-Database Machine Learning: Gradient Descent and Tensor Algebra 251

! chain rule ! chain rule

bsetto]

tasettol

[\ A = X K
Variable Placeholder Original Tree Original Tree

(a) Expression Tree. (b) Partial derivative %. (c) Partial derivative %.

Fig. 1: Expression tree for (a) the loss function and the partial derivatives (b) g—é and (c) %, used to
compute the gradient: the nodes (blue) represent operations, the variables (green) represent weights or
parameters to be optimized and therefore used for the derivatives, the placeholders are replaced by the

incoming tuples, and constants (ocher) represent a fixed value.

The framework expects the loss function as input and builds an expression tree out of it. The
expression tree allows to derive symbolically when optimizing the loss function by gradient
descent. The gradient descent operator (introduced below) passes the loss function to the
framework, obtaining the gradient in return. Since the operator forms part of the relational
algebra, it can consume the input tuples natively as it evaluates the gradient to update the
loss function’s weights at each iteration step.

The advantages of integrating gradient descent into the database system are that com-
putationally intense tasks can then run on the database server and data transfers are
reduced.

3.2.1 Basics

To carry out automatic gradient differentiation, we first build an expression tree based on
the given loss function. This tree consists of placeholders, later replaced by the incoming
tuples, variables representing the weights to be minimized, constants for constant numbers,
and operation nodes (see Fig. 1a). Given a model function m, ,(x) = a * x + b that has the
variables a, b and the placeholder x the loss function is:

lzy(a,b) = (a*x; +b - y)z.

After building the expression tree, we compute the partial derivations symbolically and
combine them into a single gradient, based on the partial derivatives of all the variables:

Vie y(@b) = (Bl/ﬁa) _ (Z(axi +b—y)*x;

ol/ob 2ax; +b—y)x1)"

252 Maximilian Schiile et al.

3.2.2 Node Evaluation

The framework provides functions to evaluate single or multiple expression tree nodes.
Nodes are implemented as structs, consisting of a numerical operator identifier and the
child node identifiers. A compile-time registry stores the node types corresponding to each
operator identifier as a binary function. To evaluate a node, the framework needs to handle
node types listed above; variables and constants evaluate to their value, placeholders return
the values of the corresponding entries of the placeholder mapping, while operators are
evaluated by fetching all their child nodes, applying the appropriate evaluator function
(drawn from the operator registry), and returning the result.

Aninternal associative cache with node identifiers as keys stores information about previously
evaluated nodes. This enables us to avoid unnecessary work by reusing cached values when
possible, only fully evaluating nodes (and adding the results to the cache) when there is a
cache miss.

3.2.3 Deriving Nodes

The framework takes symbolic derivatives of some operator nodes (i.e., addition, mul-
tiplication, subtraction, and division) directly, by setting their respective variable nodes
to one and the other variables to zero in the expression tree. We handle other operator
nodes, such as the power function, according to the chain rule. Here, the unchanged term is
implemented as a reference to the corresponding node of the original expression tree. In this
way, we can calculate the derivatives of arbitrary-degree polynomials recursively. We use
forward accumulation to compute the derivatives of multiple variables, thereby generating
an expression tree for each derivative (see Fig. 1b, 1c).

When computing the gradient, multidimensional variables are treated as multiple single
variables, with the derivatives being generated by combining the partial derivatives with
respect to each variable into one gradient vector.

3.3 Integration in Relational Algebra

Now, we turn to this paper’s main contribution, namely the creation of an in-database
gradient descent operator. In this section, we specify the loss function using lambda functions
and embed the resulting operator into the database system.

To begin, let us return the taxi data example. Here, the database stores data about previous
trips, including information about the tip amount and how the fare was paid. This may
be used as training data for assessing future taxi rides (i.e., as a test dataset) and hence
may need to be labeled. Since data is added frequently, we do not have time to extract the

In-Database Machine Learning: Gradient Descent and Tensor Algebra 253

create table trainingdata (x float, y float); create table weights(a float, b float);
insert into trainingdata ... insert into weights ...

select * from gradientdescent(

A(data, weights) (weights.a"“d.x+weights.bfd.y)z, -- the loss function is specified as A-expression
(select x,y from trainingdata d), (select a,b from weights), -- training set and initial weights
0.05, 100); -- learning rate and max. number of iteration

List. 1: Gradient descent operator using a lambda expression as loss function.

necessary data but still want to work on the most up-to-date information. We will need both
a gradient descent operator (to minimize the parametrized loss function) and a labeling
operator if we are to assess future rides.

First, we demonstrate how lambda functions can be used to express user-specified loss
functions in SQL, then we explain how to integrate the operators needed for gradient descent
into the relational algebra. Finally, we explain the concept of pipelines in database systems
and explain how our operator enables parallelism.

3.3.1 Lambda Functions

Lambda functions are anonymous SQL expressions used “to inject user-defined code* [Hu17]
into analytics operators. Originally developed to parametrize distance metrics in clustering
algorithms or edge weights in the PageRank algorithm, lambda functions are expressed
inside SQL queries and allow “variation points* [Pal7] in otherwise inflexible operators. In
this way, lambda expressions broaden the applications of the default algorithms without
the need to modify the database system’s core. Furthermore, SQL with lambda functions
substitutes any new query language, offers the flexibility and variety of algorithms needed
by data scientists, and ensures usability for non-expert database users. In addition, lambda
functions allow user-friendly function specification, as the database system automatically
deduces the lambda expressions’ input and output data types from the previously defined
table’s attributes.

Here, we use SQL lambda expressions to specify the loss function whose gradient we wish
to compute. Given two relations, R{[a, b]} (containing the initial weights) and S{[x, y]}
(containing the data), the loss function (discussed above) can be specified, for example, as
the following linear combination:

A(R,S)(R.aS.x + R.b—S.y).

In this way, we can specify arbitrary loss functions in SQL (see List. 1). Lambda functions
allow functions to be defined without providing further informations. The relation’s attributes
implicitly define the placeholder or variable nodes’ type. There is no need to redefine the
variable size, and we can also take the derivatives of higher-dimensional tensors.

254 Maximilian Schiile et al.

Calculated Weights max. lterations

Test Data

Gradient Descent

Test Data

Test Data Test Data

Training Data

(c) Pipelining and non-materializing. (d) Combined approach.

Initial Weights

Fig. 2: Architecture for fitting gradient descent into database systems’ pipelines: (a) shows the basic
query plan of the gradient descent operator: a binary operator with training data, initial weights as
parameters, and the lambda expression for the loss function, it returns the optimized weights, that can
be passed over to a labeling operator, that labels test data; (b) shows the parallelized variant, where
the tuples are collected in sub threads, unified in the main thread, where the optimization happens in a
parallel loop; (c) shows the sub threads computing local weights without materialization, there are as
many input pipelines as iterations exist; (d) shows the combined approach, where local weights are
computed initially.

3.3.2 Operator Tree

To integrate gradient descent in relational algebra, we need two operators, one gradient
descent operator to calculate the weights and one to label the incoming tuples using the
parametrized loss function. These are both binary operators as they expect two underlying
operator trees each, one for delivering the input data (training data for the gradient descent
operator and test data for the labeling operator) and one for the weights (the initial ones and
the optimal ones respectively). Both operators use lambda expressions, introduced in the
previous chapter, for specifying the loss function.

The gradient descent operator is applied to a training dataset, such as the dataset of previous
rides in our taxi data example, to generate optimal weights and enable the labeling operator
to label future examples. Alternatively, a subset of the original dataset can be used for
training, by splitting the full dataset into training and testing datasets using standard SQL
queries. Either way, we predict at least one attribute (the label) as a function of the other
attributes (the features). The gradient descent operator first calculates the weights and passes
them over to the labeling operator (see Fig. 2a). The gradient descent operator requires
labeled training data, initial weights, and a lambda function for the model. The labeling
operator consumes and materializes the optimized weights, computes labels for all incoming
feature tuples, and adds them to the results set.

In-Database Machine Learning: Gradient Descent and Tensor Algebra 255

The lambda expression must be aware of the tensors’ dimensionality. This is possible when
the tensor size and the shapes of the input parameters are known at the compile time of the
SQL query. Then, only one tuple containing all variables uses the pipeline for the initial
weights. So, we suppose the incoming pipelines delivering the weights to contain only one
tuple with all parameters. Another way is to enumerate the elements of every variable and
to push every element as a single tuple. However, this is less user-friendly as the variables’
dimensions would then need to be specified separately inside the lambda functions. This
also applies to the pipeline between the two operators: either the weights must be sent in a
fixed order or all the weights must be included in one tuple.

Both operators work independently and stand-alone. Normally acting together, they also
operate disassembled, when the weights should be computed only once but used multiple
times. Considering the taxi data example, we would materialize the optimized weights once
a day, to obtain consistent data for the following estimates, but then use the same weights
many times to label future taxi ride data. In addition, since the labeling operator simply
evaluates the specified lambda function and adds a new attribute (label) to each tuple, it can
be used with weights computed by other optimization methods.

3.3.3 Pipelining and Parallelism

We now investigate this architecture for integrating a gradient descent operator into a
database system in more detail. In database systems, operators can be combined to form an
operator tree with table scans as leafs. An operator tree may have multiple parallel pipelines
and each tuple flows through one pipeline. We apply the producer-consumer concept [Nel1]
to the operators to incorporate the algorithms in our main memory database system. It pushes
tuples toward their target operators and provides parallelism by dividing the process into
multiple execution pipelines. Operators can be classified as pipeline friendly or into pipeline
breakers and full pipeline breakers by their behaviour of passing elements through directly,
consuming all elements, or consuming and materializing all elements before producing
output. Multiple execution pipelines are realized as sub-threads of the operator whereas the
main thread is responsible for global computations in pipeline breakers.

This paper does not aim for comparing the performance of stochastic and batch gradient
descent but for make them fit into a database system. Therefore, we discuss different
strategies regarding the methods’ needs inside a database system. To recap, batch gradient
descent requires all tuples per iteration, whereas stochastic gradient descent expects one
tuple at a time. The first method optimizes the weights by taking the average deviation as
loss function, so all tuples needs to be materialized before. When expecting only one tuple
at a time, the tuples can be consumed separately or even in parallel when a synchronization
mechanism exists. Both methods work well when all tuples have been materialized before.

The intuitive way is to design gradient descent as a full pipeline breaker to consume all
incoming tuples before producing the calculated weights. The tuples have to be materialized

256 Maximilian Schiile et al.

before, so the design allows any optimization method to be called afterwards. For batch
as well as for stochastic gradient descent, the operator’s main thread performs multiple
iterations until the weights converge to the loss function’s minimum. Parallel loops grant
distributed execution either by evaluating the gradient for each tuple independently (batch)
or by updating weights as atomic global variables (stochastic). The weight synchronization
for stochastic gradient descent is based on previous works on parallelization of optimization
problems [Xil7; Zil0], which means taking the average weights after the computation
is complete (and is not the focus of this work). Fig. 2b shows the parallelism of the
materializing gradient descent operator. It consists of one main thread and one sub-thread
per incoming pipeline. The sub-threads consume and materialize the incoming tuples, while
the main thread collects them, consumes the input weights, and minimizes the loss function
in parallel.

Specialized for database system’s pipelines, we devise a non-materializing operator suited
for stochastic gradient descent only. While it still is a pipeline breaker, it computes stochastic
gradient descent in each pipeline on partitioned sets of data without materialization.
Multiple iterations are implemented by copying the underlying operator tree condoning
the disadvantages of recompiling the whole subtree and the fixed number of iterations.
Fig. 2c shows the gradient descent implementation with a separate input pipeline for each
iteration. For each pipeline, multiple sub-threads compute local weights. The main thread is
responsible for computing the global weights after each iteration is complete.

Finally, the combined approach combines the benefits of parallel pipelines with the
advantages of only compiling the subtree once and being able to terminate when the process
has converged. First, it precomputes the weights in separate pipelines handling subsets of the
data and then iterates gradient descent on the materialized tuples until it converges. Fig. 2d
shows the sub-threads only computing the local weights once for each input pipeline and
materializing the tuples. The main thread computes the global weights of the first iteration,
then performs the remaining iterations in parallel on the materialized tuples using either
batch or stochastic gradient descent.

The labeling operator is pipeline friendly and highly parallel. It evaluates the parametrized
model function for each tuple and adds the result as a new attribute without the need to
materialize any of the tuples.

4 Tensors for Database systems

Since many mathematical problems are based on tensor algebra, we also extend PostgreSQL’s
array data type to handle tensors by adding algebraic operations.

Here, we define dense tensors as a data structure whose size is evaluated at runtime but
which can also be specified by a table attribute when a tensor is created. The number of
dimensions is given first, followed by the width in each dimension. After that, the items
themselves are stored sequentially, ordered beginning with the highest-numbered dimension.

In-Database Machine Learning: Gradient Descent and Tensor Algebra 257

4.1 Transpose

We define transpose as swapping the order of the first two dimensions,
with further dimensions being treated as one huge block element. Here,
SELECT tensor_transpose(a) FROM tensors produces the transpose of 7' of the
tensor T as follows:

t —
(t)i1i2i3...im - tlzlll3...lm‘

4.2 Addition/Subtraction/Scalar Product

We handle addition or subtraction elementwise, meaning the tensors S and T must have
identical dimensions, and the scalar product acts elementwise for a given scalar r € R:
T,S,T +S,T—S,r+T e RIV>Im,
E+)iy i = tirooii T Siyoivms

(r#)iy iy =7 *ti i

4.3 Product

Matrices like A € R"™*°, B € R?*" with equal inner dimensions can be multiplied to create
the product C by summing up the product of m row elements with n column elements for each
entry ¢;j = Yxe(o] @ik brj. We can generalize this multiplication process to create products
of tensors with equal inner dimensions where the new entries are sums of corresponding
products:

I1X..xIp=0 Ji=0%...xJ,
T e R" m=0 [J ¢ R"7° "

I X X1 XJ2 X X,
S=TU e Rl m-1XJ2 ",

Sitiz..cimetf2eedm = Z liyiy.oipma KUKy i -
kelo]

4.4 Tensor Usage for Equation Systems

Simple and multiple linear regression can be also computed without gradient descent by
instead relying on tensor operations. If we set the gradient equal to zero, we will solve
simple and multiple linear regression problems in terms of equation systems such as:

! 1 2(ax;i +b—y;)*x
=Viy = - — .
0 lX,y(a, b) |X| iez);l (Z(axi + b - y[-) % 1

258 Maximilian Schiile et al.

Using the helper variables £ = 2yey Y to represent the means of

1
— dy= —
X 2yex X and § %
the labels and features, we obtain the following equations, which can easily be expressed in
SQL (see List. 2):

2 (x5 =®)(i—3)

ie|X|
a =
Y (n—-8)?2
i€|X|
b=79—ax.

with means as (select avg(x) as mean_x, avg(y) as mean_y from datapoints),
sums as (select sum((x - mean_x) * (y - mean_y)) as nominator, sum(power(x - mean_x, 2)) as
denominator from datapoints, means),
a as (select 'a', nominator / denominator as value from sums),
b as (select 'b', mean_y - a.value * mean_x as value from means, a)
select * from b union select * from a;

List. 2: Simple linear regression in SQL.

To handle the increased number of variables involved in multiple linear regression, we can
make use of the tensor operations defined above. Assuming we can invert the matrix

1 X1.1 Xl.n

x’ =|: . .. :’ 1= Rmx(n+l)

I Xm1 - Xmn

then we can obtain the weights that minimize the loss function from the following
equation [LACO09], which can be expressed in our extended SQL (see List. 3):

W= (X/TX/)AX/Ty.

select (array_inverse(array_transpose(x)*x))*(array_transpose(x)*y)
from (select array_agg(x) x from (select array[l,x_1,x_2] as x from datapoints) sx) tx,
(select array_agg(y) y from (select array[y] y from datapoints) sy) ty;

List. 3: Multiple linear regression in SQL using tensor operations.

4.5 Tensor Differentiation for Gradient Descent

Now, we combine the previous sections on gradient descent and tensors to show how
minimization problems involving gradient descent can easily be handled using tensor
differentiation with the help of tensor data types. As an example, we calculate k-Means
cluster centers by using SQL tensor data types with our gradient descent operator.

In-Database Machine Learning: Gradient Descent and Tensor Algebra 259

Gradient descent allows us to compute the centers for the k-Means clustering algorithm based
on a vector of initial weights. In List. 4, the two-dimensional points are provided as a set of
two attribute tuples and the initial centers are given as one tuple consisting of two vectors.
We then compute the centers via gradient descent by using a lambda function that expresses
the minimum distance from each point to the currently nearest center. These distances are
then optimized by adjusting the centers (weights). Afterwards, standard SQL-92 queries
can be used to assign the points to their respective clusters.

create table points (x float, y float); create table weights(wx float[], wy float[]);
insert into points ... insert into weights ...
select * from gradientdescent(

A(data, weights) min(0 <=i < length(wx, 1), (x —wx[i])? + (y — wy[i])?),

(select x,y from points), (select wx,wy from weights),0.05,100);

List. 4: Gradient descent for k-Means cluster computation.

5 Evaluation

In this section, we benchmark the gradient descent operator using the automatic gradient
computation framework for various model functions and the different architectures of
integrating gradient descent in HyPer, our in-memory database system.

These benchmarks are based on the Chicago taxi rides dataset®. For each ride, this included
the duration (in seconds), distance (in miles), fare, and payment type used. We used simple
linear regression to predict the fare based on the trip distance, and used multiple linear
regression to also consider the ride time. Finally, we used logistic regression to infer the
payment type (i.e., whether or not the fare was paid by credit card) from the fare cost.

We ran all tests using HyPer, our extended main memory database system developed for
mixed OLAP and OLTP transactions. As a baseline, we considered two other database
systems, namely MariaDB 10.1.30, PostgreSQL 9.6.8 with the MADIib v1.13 extension,
as well as two dedicated tools, namely TensorFlow 1.3.0 (with GPU support enabled and
disabled) and R 3.4.2. All experiments were run multi-threaded on a 20-core Ubuntu 17.04
machine (Intel Xeon E5-2660 v2 CPU) with hyper-threading, running at 2.20 GHz with
256 GB DDR4 RAM. An Nvidia GeForce GTX 1050 Ti was installed to enable TensorFlow
computations on a GPU. We provide the test scripts for reproducibility with a data generator
online®.

All tests were carried out five times and the average runtimes recorded. A Python script
managed the program calls and measured the total user time spent on each one. The runtimes
include the time taken to load the data into TensorFlow and into R, and also the TensorFlow
session creation time. To assume the database system as the data storage tier, the data there
was considered to have already been loaded.

8 https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
9 https://gitlab.db.in.tum.de/MaxEmanuel /regression_in_sql

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://gitlab.db.in.tum.de/MaxEmanuel/regression_in_sql

260 Maximilian Schiile et al.

5.1 Linear Regression Using Equation Systems

R —@— TensorFlow TensorFlow-GPU R —@— TensorFlow TensorFlow-GPU
MariaDB PSQL —@— HyPer MariaDB PSQL —@— HyPer
MADIib MADIib
AL 1 11 A1 1 B A T T T T T T T T T T T T T T T T
104 £ 4
10t 1 E B E
g — L 10° £ E
@ [) @« F :
£ 0 1 & 10°¢ E
[} 0 [| [} . |
S 1 E wf g
& B 1 B F]
i 1 10° ¢ E
T
101] . 107t g E
T T T 1T O 11 N WUV T1 T T T W 1T 1) O WUV TTT M
10t 10?2 10 10* 10° 106 10t 102 10® 10* 10° 106
Number of Tuples Number of Tuples
(a) Simple linear regression. (b) Multiple linear regression.

Fig. 3: Runtime for solving (a) simple or (b) multiple linear regression by equation systems.

Simple linear regression was solved using common SQL-92 queries in our main memory
database system and the competitor database systems. In TensorFlow, we used tensor algebra
for solving equation systems for linear regression. In MariaDB and PostgreSQL, we defined
the matrix operations needed to solve multiple linear regression as a single query, while
our main memory database system and R already support tensor algebra. The MADIib
extension for PostgreSQL provides a predefined function for solving equation systems for
linear regression that we used.

As Fig. 3 shows, our in-memory database was able to carry out both linear regression tasks
in less than 0.3 seconds, significantly outperforming all the baseline methods. For small
numbers of tuples, even the other classical database systems performed substantially better
than TensorFlow, which required at least three seconds for every task.

5.2 Gradient Descent Benchmarks

For the gradient descent benchmark, we evaluated linear regression, multiple linear regres-
sion, and logistic regression models, minimizing a least squares loss function. In addition,
we performed k-Means center computations with a specialized loss function. Each gradient
descent optimization run consisted of 5,000 iterations, with a learning rate of 0.0000000071.

For TensorFlow and R, we used gradient descent library functions to perform linear
regression and logistic regression. For the baseline database systems, we implemented
gradient descent for both models using PL/pgSQL in PostgreSQL and procedures in
MariaDB. Additionally, we benchmarked the MADIib’s logistic regression function for

In-Database Machine Learning: Gradient Descent and Tensor Algebra 261

R —@ — TensorFlow TensorFlow-GPU R —@ — TensorFlow TensorFlow-GPU
MariaDB PSQL —@— HyPer MariaDB PSQL —@— HyPer
104 %HHH L AL L AL \? 104 %HHH LU LU LA LA LA \?
103 E E| 103 E
® F 1 =« r §
g 10 4 2 10 E
E ol - :
=10t E E = 1E -
S 0 A— — | & 10 E E
100 £ E 100 |- .
Fe- — P — 7
1071 Bl vl vl vl vl ol 13 1071 =TT X VT N S 11 WM N1 s
10t 102 103 10* 10° 106 10t 102 103 10* 10° 106
Number of Tuples Number of Tuples
(a) Simple linear regression. (b) Multiple linear regression.

Fig. 4: Runtime for (a) simple and (b) multiple linear regression using gradient descent.

R ——@— TensorFlow TensorFlow-GPU
MariaDB PSQL —@— HyPer
MADIib ’ R —@— TensorFlow TensorFlow-GPU
L S L1 1 1 1 e — @ HyPer GD HyPer k-Means
100 % 1 T T T 1 1 % LN LB LA LB LB T T
c | 1 2 E P
10% E 0 S /]
B E r p 1
L / il
@ E
£ 1 2 10 — E
o 102 4 3 F £
< El 9 =]
R=] g L b
& 1 1 £
U 1 P 10f E
10° E § §
E o
P/ 7 [i
10~1 Bl vl vvnwl vl vl el 1§ 10~ il oo ol o ol S
10t 102 10® 10* 10° 106 10 102 10% 10* 105 106
Number of Tuples Number of Tuples
(a) Logistic regression. (b) k-Means.

Fig. 5: Runtime for (a) logistic regression and (b) clustering using gradient descent.

PostgreSQL. We computed the centers for k-Means in TensorFlow using the corresponding
library function, in our main memory database system using both the dedicated k-Means
operator and the gradient descent operator, and in R using the k-Means clustering library.

The results for linear regression (see Figs. 4a, 4b) show that both the TensorFlow’s and R’s
library functions run in constant time for small numbers of input tuples and perform better
than the hardcoded in-database gradient descent functions, which scaled linearly.

Considering that linear regression can be solved by equation systems without gradient
descent, all database systems performed better for linear regression than the TensorFlow’s

262 Maximilian Schiile et al.

and R’s library functions. Nevertheless, our approach, gradient descent in a main memory
database system, was as performant as dedicated tools using predefined models.

For the logistic regression tasks (see Fig. 5a), also dedicated tools’ library functions, still
faster than the classical database systems, scaled linearly in the input size but were slower
than our approach running in HyPer.

Fig. 5b also shows that our gradient descent operator was the fastest at computing the
k-Means centers and even beating TensorFlow, although they both omitted the cluster
assignment step. The R k-Means library function was faster than TensorFlow and slower
than our database system (time for assigning points to clusters not excluded).

We further investigate on the time needed for data loading and for the actual computation.
In Fig. 6, we see the runtime split up into CSV data loading, computation time, and
TensorFlow’s session creation. Essentially is that the time needed for data loading represents
the time to be saved by doing more computations inside of database systems. Also we
observed that the time for TensorFlow’s session creation is more expensive when working
on the GPU whereas the computation itself sometimes is faster. This explains the better
results using TensorFlow without GPU support on smaller datasets.

ODeclaration @ Data Loading ODeclaration H Data Loading
O TF Session B Computation O TF Session B Computation
10 [~ T T T T] T T L T
3 30 E
o5 I > B
8| H 3 E
2 : e
g U 5 f
L1 I T B I . B
2 : P ;
g 4 ! 53 EE
= S) = 100 E;E E %
20 < = b R e ;
£ 5 gg K i
5 > I
0 DD BD - 0 ;D l ;D _;B
| | Q | | | | Q | |
6 57 54 o 3 o7
Q¥ < © Q® < ¥ © ¥
/\}Q' \}0. .Q/\g’ \)Oéd 0‘0' N ,\')\0' .Q"Q’ \)oéa'
é\’& & @0 &
(@) 10° tuples. (b) 10° tuples.

Fig. 6: Runtime split up into the different operations (declarations of variables, CSV data loading,
TensorFlow’s session creation, actual computation) using (a) 10° and (b) 106 tuples for simple/multiple
linear regression using equation systems and for simple and logistic regression by gradient descent: the
time needed for data loading could be saved by doing more computations inside of database systems.

In summary, much time is spent on data loading when performing computations using
dedicated tools. This time can be saved without any drawbacks by shifting computations

In-Database Machine Learning: Gradient Descent and Tensor Algebra 263

into the core of database systems. So it is worth to optimize various gradient descent tasks
inside of database systems when such an operator exists.

5.3 Pipelining

i B materiatizing | @pipetined] Beombined

0.8 - B materializing —®— pipelined —@—combined aterializing —®— pipelined —8— combined
LGB T T LSS
@ 107t g 10" & El
=
— « @«
g 2102 ¢ = [’
£ @ R (S E
5 E 10-3 b g E]
= &
F 1071 E
L _
[l El E 1
105 b i o e
2 4 6 8 10 10t 102 10 10* 105 106 100 10! 102 103
Number of Threads Number of Tuples Number of Iterations
(a) Scale Tests. (b) Varying the input size. (c) Varying the number of iterations.

Fig. 7: Benchmarks for the different architectures of gradient descent in the database system’s pipelines
by varying the number of (a) available threads, (b) the input size, and (c) the number of iterations.

Finally, we evaluated several different approaches to integrating gradient descent into the
database systems’ pipelines. For this reason, we measured the performance of three different
linear regression implementations: materializing, non-materializing (pipelined), and the
combined approach. We varied the number of available threads (from one to ten, see Fig. 7a),
the training set size (from ten to 100, see Fig. 7b), and iterations (from one to 100, see
Fig. 7c). The other parameters remained constant, defaulting to 10 iterations, 10° tuples and
one thread. Parallelism is enabled for the scale tests only to avoid the overhead of preparing
multiple pipelines during the other tests.

In all tests, the non-materializing implementation was the fastest when the methods could not
terminate early because all iterations are precompiled as input pipelines. The materializing
and the combined implementations performed very similarly but more slowly, but had the
advantage of stopping when the weights converged or reaching a predefined threshold. All
three implementations behaved similarly, the runtime depends linearly on both the size of
the training set and the number of iterations.

All implementations scaled linearly with the number of threads with performance increasing
by about 20 % percent for each additional thread. The parallelization of the non-materializing
version scaled best whereas the overhead of synchronizing the weights for the materializing
one allows the parallelization to be faster from the fourth added thread. When enabling
parallelism but providing only one thread for execution, the non-materializing implementa-
tion performed worse than the others as it could not make use of the overhead of preparing
sub-threads for multiple input pipelines.

The combination of both strategies performed slightly but not significantly better in all
tests. As the tuples still have to be materialized and the weights have to be computed in

264 Maximilian Schiile et al.

parallel loops, only one iteration could be saved by precomputing the weights in front. In
our scenario, up to 10 % could be saved. But with increasing number of iterations the
performance gain would be negligible.

To conclude, the non-materializing version appears to be the fastest when all iterations must
be completed or when it is not possible to allocate enough memory for materializing the
tuples. If gradient descent converges quickly, a materializing approach is the most suitable,
due to its ability to terminate early. The combination of both methods is only suited when few
iterations are needed as of little performance gains otherwise. Also the non-materializing
architecture is only applicable in combination with stochastic gradient descent, whereas the
materializing one works with batch gradient descent as well.

6 Conclusion

In this paper, we have presented in-database approaches to machine learning that use
automatic differentiation, in-database gradient descent, and tensor algebra.

To achieve this, we extended recently introduced lambda functions to act as loss functions
for gradient descent, and we also developed three strategies for integrating gradient descent
into the pipelining concept of today’s modern in-memory database systems. For our gradient
descent, we developed an automatic gradient differentiation framework based on expression
trees.

Together with tensor algebra, we showed that both extensions are sufficient for solving
common machine learning tasks in the core of database systems without the use of external
tools. A direct comparison with other relational database systems (both classical disk-based
and modern in-memory systems) showed that this enabled linear regression tasks to be
computed more rapidly, even by classical disk-based database systems. Moreover, pure
approximation tasks like logistic regression can be solved as quickly by an extended main
memory database system as