
Modern	techniques	for	transaction-
oriented	database	recovery

Caetano	Sauer





My	pleas

1.Demand	on-demand	recovery
2.Make	the	log	great	again



Demand	on-demand	recovery



2.	REDO	scan

A BA
B

Buffer	pool Database
Pages

requiring
redo

Transactions
requiring
undo

3.	UNDO	scan

1.	Log	analysis

ARIES

system	mostly	unavailable	during	three	phases

Recovery	info

LOG



ARIES	restart

6

Recovery	info

2.	REDO	scan

A BA
B

Buffer	pool Database

3.	UNDO	scan

1.	Log	analysis

system	mostly	unavailable	during	three	phases

LOG

Pages
requiring
redo

Transactions
requiring
undo



Recovery	info

Instant	recovery

B

Buffer	pool

fix(B)	

Aborting	txn.
(pre-failure)

Running	txn.
(post-failure) lock(f)	

lock
conflict!	

same	recovery	actions,	different	schedule

redo	and	undo	on	demand,	without	waiting	for	log	scans

Pages
requiring
redo

Transactions
requiring
undo
+	locks

...LOG

per-page	log	chains



Failure	classes

Failure	class Loss Typical	cause Response

Transaction Single-transaction	progress Deadlock,	constraint	violation Rollback

System Server	process	(in-memory	state) Software	fault,	power	loss Restart

Media Persistent	database	contents Hardware	fault Restore

Single	page Local	integrity Partial	writes,	wear-out Repair



Make	the	log	great	again



Log DB ?
Dual	storage Single	storage

Main	memory Main	memory

“...	a	DBMS	is	really	two	DBMSs,	one	
managing	the	database	as	we	know	it	
and	a	second	one	managing	the	log.”

Michael	Stonebraker

write-
optimized

read-
optimized

Throw	away	the	database!



The	log	as	a	partitioned	B-tree

P0 P1 P2
LSN	domain

y z w

BABABA

x

like	an	LSM,	but	with	page	identifiers	and	their	log	records



The	log	as	a	partitioned	B-tree
(implementation)

P0 P1 P2

unsorted
partition

sorted
partitions

BA

page	→	LSN
mapping

LSN	domain
y z w

Partitioned	log	index

log	appends
(txn.	commit)

(sort	low-water	mark)

BABABA

ux



Merging
Before:

BABABA

�z,	w�

�x,	z�

After:

BABA

�z,	w�

�x,	y� �y,	z�

merge



Log	records

Data
structure

fetch

append

Log	
index

reorg.

volatile persistent

FineLine:

WAL
Log	records

Database

Data
structure

write

read

volatile persistent

append

Write-ahead	logging:

FineLine



FineLine recovery

Log	records

Data
structure

Indexed
log

volatile persistent



fetch

Indexed
log

volatile persistent

FineLine recovery



fetch

Indexed
log

volatile persistent

FineLine recovery



fetch

Indexed
log

volatile persistent

FineLine recovery



➢ nodes	recovered	automatically	during	fetch
➢ volatile	structures	=	in-memory	database
➢ no	undo,	no	dirty	pages,	no	checkpoints,	no	offline	log	scans

fetch

append

Indexed
log

volatile persistent

FineLine In-memory
database



In-memory
databases

Log-structured
storage

DBMS
Buffer	mgmt.

Physiological	
logging



My	pleas

1.Demand	on-demand	recovery
2.Make	the	log	great	again



Standing	on	the	shoulders	of	Giants



Thank	you!
csauer@tableau.com


