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My	pleas

1.Demand	on-demand	recovery
2.Make	the	log	great	again
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Failure	classes

Failure	class Loss Typical	cause Response

Transaction Single-transaction	progress Deadlock,	constraint	violation Rollback

System Server	process	(in-memory	state) Software	fault,	power	loss Restart

Media Persistent	database	contents Hardware	fault Restore

Single	page Local	integrity Partial	writes,	wear-out Repair



Make	the	log	great	again



Log DB ?
Dual	storage Single	storage

Main	memory Main	memory

“...	a	DBMS	is	really	two	DBMSs,	one	
managing	the	database	as	we	know	it	
and	a	second	one	managing	the	log.”

Michael	Stonebraker
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Throw	away	the	database!



The	log	as	a	partitioned	B-tree
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➢ nodes	recovered	automatically	during	fetch
➢ volatile	structures	=	in-memory	database
➢ no	undo,	no	dirty	pages,	no	checkpoints,	no	offline	log	scans
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Standing	on	the	shoulders	of	Giants



Thank	you!
csauer@tableau.com


