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Join Ordering

SELECT ...
FROM A, B, C, D, E, F
WHERE A.a=B.a AND B.b=C.b AND B.c=E.c

AND C.d=D.d AND E.e=F.e
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Problem Complexities
I Join Ordering is NP-Hard
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Easy! Manageable Impossible?

I Tableau (DBTEST 2018): Queries regularly involve a few dozen joins
I SAP (BTW 2017): Largest query touches 4,598 relations



Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)
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I For performance and correctness reasons: Do not consider crossproducts



Search Space Linearization

I If the order of relations in the optimal plan is known
I Generating the optimal plan from this linearization takes polynomial time
I Optimally combine optimal solutions for subchains

A B
E F

C D

A B C E F D



Search Space Linearization

I Of course: Optimal order unknown
I But IKKBZ (TODS 3/1984, VLDB 1986): optimal left-deep plan in O(n2)

I Using IKKBZ to linearize the search space yields good bushy plans



IKKBZ

I Requires acyclic query graph (build MST if cyclic)
I Idea: Transform precedence graphs into a linear order
I Assign ranks to nodes (cost/benefit ratio)
I Successively merge child chains increasing in ranks
I Resolve contradictory sequences in child chains by merging them into a single node



IKKBZ
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I Build precedence graph (here rooted in A)
I Resolve contradictory sequences in child chains by merging them into a single node

rank(E) > rank(F), but E has to precede F
I Merge child chains increasing in the nodes rank

rank(C) < rank(E,F) < rank(D)



Search Space Linearization

A B
E F

C D
A B C E F D

Query Graph Linearized Search Space

I Repeat this for each relation
I Guarantee: Final plan at least as good as the best left-deep plan



Adaptive Optimization – Achievements (SIGMOD 2018)

I Solve easy cases optimally
I Search Space Linearization:

near-optimal plans for common queries
I Gracefully tune down plan quality for

the most complex queries
I Optimize queries on hundreds of

relations in the blink of an eye
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Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)
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Non-Inner Joins – More Than a Corner Case

I Tableau (DBTEST 2018):
20% of the queries involve outer joins, up to 247 in a single query

I Others also report significant numbers of queries with outer joins
I Non-Inner joins impose reordering constraints
I Expressed using hyperedges (Moerkotte et al. SIGMOD 2013)



Non-Inner Joins – Search Space Linearization?

I IKKBZ only handles regular graphs
I Still: Given a proper linearization, polynomial time construction of bushy plan

I How to extend IKKBZ to generate linearizations for hypergraphs?



Precedence for Hypergraphs

A B

C

E F

D

I Hyperedge {C,D} – {E}
I Backward and forward hyperedges



Precedence for Hypergraphs – Backward Hyperedges

A B

C

E F

D

B

ACD

E

F
I Precedence DAG, multiple relations have to precede
I During merge: Ensure all precedence constraints are satisfied



Precedence for Hypergraphs – Forward Hyperedges

A B
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E F

D

E

C,B,D

A

F

I Join towards multiple relations, no left deep solution
I Recursively linearize group {C,D}: C,B,D

I Guarantee: Final plan at least as good as the best left-deep plan if there exists one



Experiments

I More than 10 different join ordering algorithms
I 60 seconds timeout per query
I Standard benchmarks (TPC-H, TPC-DS, etc.) easily optimized by full DP
⇒ 1,000 realistic random tree queries

I Up to 100 relations each
I Random reordering constraints



Plan Quality

I Cost normalized to the best known plan per query

I LinDP++ generates clearly superior plans



Optimization Time
I Pure inner join queries vs. queries with outer joins
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I LinDP++ handles non-inner joins as fast as inner joins



Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)
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I For performance and correctness reasons: Do not consider crossproducts



Do Not Consider Crossproducts

1. Performance
I Exponential search space regardless of the query’s structure
I Most considered crossproducts will not reduce cost (A B ∈ O(|A||B|))

2. Correctness
I Crossproducts in the presence of non-inner joins can yield wrong query results
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Do Consider Some Crossproducts

I Observation: Some plans would significantly benefit from crossproducts
I TPC-DS: Crossproducts improve geometric mean of cost by 15%
I However: 82% of the queries do not benefit at all from crossproducts
I Thus: Do consider some crossproducts (ideally the important ones)

I How to efficiently discover the valid and important crossproducts?



Crossproducts

I Intuitively: Crossproduct to avoid massive intermediate results
I That is: Bypass expensive joins
I Idea: Check neighboring inner joins for opportunities
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I If crossproduct is smaller than both intermediate results:
Add explicit edge to the query graph



Cost Improvement

TPC-DS LDBC JOB
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Optimization Overhead

Algorithm TPC-H TPC-DS LDBC JOB SQLite

LinDP++ 8% 6% 0 8% 0

DPhyp 12% 2.8X 0 76% 0

All Crossproducts 2.4X 214X 53X 83X 152X

I LinDP++ efficiently considers most of the relevant crossproducts



LinDP++

Optimize as fast as pure inner join queries

Efficiently consider promising crossproducts
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Generate significantly better plans
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Bonus Slides



Standard Benchmarks

I Plan Quality (normalized cost)

Algorithm TPC-H TPC-DS LDBC JOB SQLite

DPhyp 1.00 1.00 1.00 1.00 1.00

LinDP++ 1.00 1.00 1.00 1.07 1.00

I Optimization Time (ms)

Algorithm TPC-H TPC-DS LDBC JOB SQLite

DPhyp 0.4 90 1.2 227 2.2K

linearized DP 1.4 18.7 4.4 33.4 4.7K

LinDP++ 1.6 19.9 4.4 36.2 4.7K

I Standard benchmarks barely a challange for an optimizer


