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Join Ordering

SELECT ...

FROM A, B, C, D, E, F

WHERE A.a=B.a AND B.b=C.b AND B.c=E.c
AND C.d=D.d AND E.e=F.e
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Problem Complexities m

» Join Ordering is NP-Hard

Easy! Manageable Impossible?

» Tableau (DBTEST 2018): Queries regularly involve a few dozen joins
» SAP (BTW 2017): Largest query touches 4,598 relations
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» For performance and correctness reasons: Do not consider crossproducts



Search Space Linearization

» If the order of relations in the optimal plan is known
» Generating the optimal plan from this linearization takes polynomial time

» Optimally combine optimal solutions for subchains
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Search Space Linearization

» Of course: Optimal order unknown
» But IKKBZ (TODS 3/1984, VLDB 1986): optimal left-deep plan in O(n?)
P> Using IKKBZ to linearize the search space yields good bushy plans



IKKBZ ninl

Requires acyclic query graph (build MST if cyclic)
Idea: Transform precedence graphs into a linear order
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>

» Assign ranks to nodes (cost/benefit ratio)

» Successively merge child chains increasing in ranks
>

Resolve contradictory sequences in child chains by merging them into a single node



IKKBZ
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» Build precedence graph (here rooted in A)

» Resolve contradictory sequences in child chains by merging them into a single node
rank(E) > rank(F), but E has to precede F

» Merge child chains increasing in the nodes rank
rank(C) < rank(E,F) < rank(D)



Search Space Linearization
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> Repeat this for each relation

» Guarantee: Final plan at least as good as the best left-deep plan
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Adaptive Optimization — Achievements (SIGMOD 2018) UM
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, DBMS A
» Solve easy cases optimally

» Search Space Linearization:

near-optimal plans for common queries 407 DBMS B

» Gracefully tune down plan quality for

the most complex queries 920 |

PostgreSQL
» Optimize queries on hundreds of
relations in the blink of an eye
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Non-Inner Joins — More Than a Corner Case

» Tableau (DBTEST 2018):
20% of the queries involve outer joins, up to 247 in a single query

» Others also report significant numbers of queries with outer joins
» Non-Inner joins impose reordering constraints
» Expressed using hyperedges (Moerkotte et al. SIGMOD 2013)



Non-Inner Joins — Search Space Linearization?

» IKKBZ only handles regular graphs

> Still: Given a proper linearization, polynomial time construction of bushy plan

» How to extend IKKBZ to generate linearizations for hypergraphs?



Precedence for Hypergraphs
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» Hyperedge {C,D} — {E}
» Backward and forward hyperedges



Precedence for Hypergraphs — Backward Hyperedges

» Precedence DAG, multiple relations have to precede

» During merge: Ensure all precedence constraints are satisfied



Precedence for Hypergraphs — Forward Hyperedges m
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» Join towards multiple relations, no left deep solution

» Recursively linearize group {C,D}: C,B,D

» Guarantee: Final plan at least as good as the best left-deep plan if there exists one



Experiments

» More than 10 different join ordering algorithms
» 60 seconds timeout per query
» Standard benchmarks (TPC-H, TPC-DS, etc.) easily optimized by full DP

= 1,000 realistic random tree queries

» Up to 100 relations each
» Random reordering constraints



Plan

Normalized Costs [log scale]

Quality
» Cost normalized to the best known plan per query

linearized DP (fallback to GOO/DPhyp)
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» LinDP++ generates clearly superior plans



Optimization Time m

» Pure inner join queries vs. queries with outer joins
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» LinDP++4 handles non-inner joins as fast as inner joins
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» For performance and correctness reasons: Do not consider crossproducts



Do Not Consider Crossproducts

1. Performance

» Exponential search space regardless of the query's structure
> Most considered crossproducts will not reduce cost (AXB € O(|A||B]))

2. Correctness
» Crossproducts in the presence of non-inner joins can yield wrong query results
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Do Not Consider Crossproducts

1. Performance

» Exponential search space regardless of the query's structure
> Most considered crossproducts will not reduce cost (AXB € O(|A||B]))
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Do Consider Some Crossproducts

Observation: Some plans would significantly benefit from crossproducts

>

» TPC-DS: Crossproducts improve geometric mean of cost by 15%

» However: 82% of the queries do not benefit at all from crossproducts
>

Thus: Do consider some crossproducts (ideally the important ones)

> How to efficiently discover the valid and important crossproducts?



Crossproducts

» Intuitively: Crossproduct to avoid massive intermediate results
> That is: Bypass expensive joins

» Idea: Check neighboring inner joins for opportunities
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» If crossproduct is smaller than both intermediate results:
Add explicit edge to the query graph
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Cost Improvement
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Optimization Overhead

Algorithm TPC-H TPC-DS LDBC JOB SQLite
LinDP++ 8% 6% 0 8% 0
DPhyp 12% 2.8X 0 76% 0
All Crossproducts 2.4X 214X 53X 83X 152X

» LinDP++ efficiently considers most of the relevant crossproducts



LinDP++

Optimize as fast as pure inner join queries
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Efficiently consider promising crossproducts
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Generate significantly better plans
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Bonus Slides



Standard Benchmarks

» Plan Quality (normalized cost)

Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 1.00 1.00 1.00 1.00 1.00
LinDP++ 1.00 1.00 1.00 1.07 1.00
» Optimization Time (ms)
Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 0.4 90 1.2 227 2.2K
linearized DP 1.4 18.7 4.4 33.4 4.7K
LinDP++ 1.6 19.9 4.4 36.2 4.7K

» Standard benchmarks barely a challange for an optimizer



