LinDP++: Generalizing Linearized DP to Crossproducts and
Non-Inner Joins

Bernhard Radke, Thomas Neumann

Technische Universitat Miinchen

Join Ordering

SELECT ...

FROM A, B, C, D, E, F

WHERE A.a=B.a AND B.b=C.b AND B.c=E.c
AND C.d=D.d AND E.e=F.e

X
" 4 7N
X D
/C—D le/ \M
SOGHNE . IVANAN
7\

Query Graph C Execution Plan

Problem Complexities m

» Join Ordering is NP-Hard

Easy! Manageable Impossible?

» Tableau (DBTEST 2018): Queries regularly involve a few dozen joins
» SAP (BTW 2017): Largest query touches 4,598 relations

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018) TUTI

I Query I

no . no
easy? medium?

yes yes
I solve optimally I search space gracefully introduce
linearization greediness to keep
optimization time
reasonable

» For performance and correctness reasons: Do not consider crossproducts

Search Space Linearization

» If the order of relations in the optimal plan is known
» Generating the optimal plan from this linearization takes polynomial time

» Optimally combine optimal solutions for subchains

A_B<C—D \
= F //\ E/\

Search Space Linearization

» Of course: Optimal order unknown
» But IKKBZ (TODS 3/1984, VLDB 1986): optimal left-deep plan in O(n?)
P> Using IKKBZ to linearize the search space yields good bushy plans

IKKBZ ninl

Requires acyclic query graph (build MST if cyclic)
Idea: Transform precedence graphs into a linear order

| 2

>

» Assign ranks to nodes (cost/benefit ratio)

» Successively merge child chains increasing in ranks
>

Resolve contradictory sequences in child chains by merging them into a single node

IKKBZ

=

A
A A !,
/10
| 3/10 | 3/10 B
< AN AN cofo
A—B C
~ E_F 4/10 £ C 6/10 7/0 EF 6/10 ! ”
3/10 i é 9/10 [l) 9/10 EiF
D 9/10

» Build precedence graph (here rooted in A)

» Resolve contradictory sequences in child chains by merging them into a single node
rank(E) > rank(F), but E has to precede F

» Merge child chains increasing in the nodes rank
rank(C) < rank(E,F) < rank(D)

Search Space Linearization

A—B" A—B=—C_ E—F
~ E—F
Query Graph Linearized Search Space

> Repeat this for each relation

» Guarantee: Final plan at least as good as the best left-deep plan

D

Adaptive Optimization — Achievements (SIGMOD 2018) UM

f=2}
f=}
|

, DBMS A
» Solve easy cases optimally

» Search Space Linearization:

near-optimal plans for common queries 407 DBMS B

» Gracefully tune down plan quality for

the most complex queries 920 |

PostgreSQL
» Optimize queries on hundreds of
relations in the blink of an eye

median optimization time [s]

¥

adaptive

1 1 1 1
10 200 400 600 800 1,000

relations

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018) TUTI

no corner no) no
5 medium?
case’

- lyes

search space gracefully introduce

linearization greediness to keep

optimization time
reasonable

GOO/linDP

Non-Inner Joins — More Than a Corner Case

» Tableau (DBTEST 2018):
20% of the queries involve outer joins, up to 247 in a single query

» Others also report significant numbers of queries with outer joins
» Non-Inner joins impose reordering constraints
» Expressed using hyperedges (Moerkotte et al. SIGMOD 2013)

Non-Inner Joins — Search Space Linearization?

» IKKBZ only handles regular graphs

> Still: Given a proper linearization, polynomial time construction of bushy plan

» How to extend IKKBZ to generate linearizations for hypergraphs?

Precedence for Hypergraphs

C
F
A — B E— F
N
D

» Hyperedge {C,D} — {E}
» Backward and forward hyperedges

Precedence for Hypergraphs — Backward Hyperedges

» Precedence DAG, multiple relations have to precede

» During merge: Ensure all precedence constraints are satisfied

Precedence for Hypergraphs — Forward Hyperedges m

C
y
A — B E— F C,B,D F
h |
D

» Join towards multiple relations, no left deep solution

» Recursively linearize group {C,D}: C,B,D

» Guarantee: Final plan at least as good as the best left-deep plan if there exists one

Experiments

» More than 10 different join ordering algorithms
» 60 seconds timeout per query
» Standard benchmarks (TPC-H, TPC-DS, etc.) easily optimized by full DP

= 1,000 realistic random tree queries

» Up to 100 relations each
» Random reordering constraints

Plan

Normalized Costs [log scale]

Quality
» Cost normalized to the best known plan per query

linearized DP (fallback to GOO/DPhyp)

LinDP++

—_
o
1
L]

w
1
L]

N ILLJ - pe _n.ilij.'__-;_i_:.__..

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Query Size (number of relations)

» LinDP++ generates clearly superior plans

Optimization Time m

» Pure inner join queries vs. queries with outer joins

1204
é 901
(V] .
= Algorithm
'_
S 60+ linearized DP
g = LinDP++
E
i -
& 30

0 = o

10 20 30 40 5 60 70 8 90 100
Query Size (number of relations)

» LinDP++4 handles non-inner joins as fast as inner joins

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018) TUTI

I Query I

és.

yes

I solve optimally I
DPhyp

corner

\ case?

no

GOO/DPhyp

medium?

l yes

no

search space
linearization

gracefully introduce

greediness to keep

optimization time
reasonable

GOO/LinDP++

» For performance and correctness reasons: Do not consider crossproducts

Do Not Consider Crossproducts

1. Performance

» Exponential search space regardless of the query's structure
> Most considered crossproducts will not reduce cost (AXB € O(|A||B]))

2. Correctness
» Crossproducts in the presence of non-inner joins can yield wrong query results

C X X
‘ / \ / \
A X D X
A B / \ * / \
‘ M D X B
/ \ / \
D B C cC A

Do Not Consider Crossproducts

1. Performance

» Exponential search space regardless of the query's structure
> Most considered crossproducts will not reduce cost (AXB € O(|A||B]))

2. Correctness
» Crossproducts in the presence of non-inner joins can yield wrong query results

C X X
‘ / N\ / \
A X A N
A B / \ = / \
‘ X D X B
/ \ / \
D B C c D

Do Consider Some Crossproducts

Observation: Some plans would significantly benefit from crossproducts

>

» TPC-DS: Crossproducts improve geometric mean of cost by 15%

» However: 82% of the queries do not benefit at all from crossproducts
>

Thus: Do consider some crossproducts (ideally the important ones)

> How to efficiently discover the valid and important crossproducts?

Crossproducts

» Intuitively: Crossproduct to avoid massive intermediate results
> That is: Bypass expensive joins

» Idea: Check neighboring inner joins for opportunities

10M 10M 10M
F X M
100/ \04 om /Y om /N
1l— ™2 M D, M Dy
/ \ / \
F Dy F D>

» If crossproduct is smaller than both intermediate results:
Add explicit edge to the query graph

10M

/ \

40

/ \
Dy Dy

Cost Improvement

Cost Improvement Factor

TPC-DS LDBC JOB
121
8-
4-
J
0 25 50 75 1000 25 50 75 1000 25 50 75 100

Percentile

Crossproducts
—— None
— Al

—— Heuristic

Optimization Overhead

Algorithm TPC-H TPC-DS LDBC JOB SQLite
LinDP++ 8% 6% 0 8% 0
DPhyp 12% 2.8X 0 76% 0
All Crossproducts 2.4X 214X 53X 83X 152X

» LinDP++ efficiently considers most of the relevant crossproducts

LinDP++

Optimize as fast as pure inner join queries

inearzed D falback o GOODPhyp) LDPes
o
=
3
8
T a5
i @;ﬁ;
8 I
3 . =
g : [] I S
S .
H ' .
) l T I T T T tat i

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

Efficiently consider promising crossproducts

o

@ .

£ Algorithm

£

s 60 linearized DP
5 = LinDP++

E

3

S

10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

Generate significantly better plans

TPC-DS LDBC JoB

l; Crossproducts
% . ~— None

3 — Al

g — Heuristic
K

0 25 50 75 1000 25 50 75 1000 25 50 75 100
Percentile

Bonus Slides

Standard Benchmarks

» Plan Quality (normalized cost)

Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 1.00 1.00 1.00 1.00 1.00
LinDP++ 1.00 1.00 1.00 1.07 1.00
» Optimization Time (ms)
Algorithm TPC-H TPC-DS LDBC JOB SQLite
DPhyp 0.4 90 1.2 227 2.2K
linearized DP 1.4 18.7 4.4 33.4 4.7K
LinDP++ 1.6 19.9 4.4 36.2 4.7K

» Standard benchmarks barely a challange for an optimizer

