
LinDP++: Generalizing Linearized DP to Crossproducts and
Non-Inner Joins

Bernhard Radke, Thomas Neumann

Technische Universität München

Join Ordering

SELECT ...
FROM A, B, C, D, E, F
WHERE A.a=B.a AND B.b=C.b AND B.c=E.c

AND C.d=D.d AND E.e=F.e

A B
E F

C D

Query Graph

A

B C

E F

D

Execution Plan

Problem Complexities
I Join Ordering is NP-Hard

R4

R5

R6

R7

R0

R1

R2

R3

R8

R9

R1
R16

R17

R14

R15

R12

R13

R10

R11

R18

R19

R38

R39

R34

R35

R36

R37

R30

R31

R32
R33

R4

R5

R6

R7

R0

R43
R2

R3

R28 R8

R9

R49

R48

R45

R44

R47

R46

R41

R40

R29

R42

R27

R26

R25

R24

R23

R22

R21

R20

R499

R498

R491

R490

R493

R492

R495

R494

R497

R496

R396

R397

R394

R395

R392

R393

R390

R258
R257

R256

R255

R254

R253

R252

R398

R250

R262

R172

R173

R170

R171

R176

R177

R174

R175

R178

R179

R259

R391

R98

R99

R96

R97

R94

R95

R92

R93

R90

R91

R477

R476

R475

R474

R473

R472

R471

R470

R479

R478

R251

R399

R388

R213

R212

R211

R210

R217

R216

R215

R214

R219

R218

R358

R359

R352

R353

R350

R351

R356

R357

R354 R355

R70

R338

R72

R73

R74

R75

R76

R339

R78

R79

R136

R137

R134

R135

R132

R133

R130

R131

R138

R139
R238

R183

R182

R181

R180

R187

R186

R185

R184

R189

R188

R439

R438

R433
R432

R431

R430

R437

R436

R435

R434

R330

R318

R319

R316

R317

R314

R315

R312

R313

R310

R311

R38

R39

R34

R35

R36

R37

R30

R31

R32

R33

R4

R5

R6

R7

R0

R1

R2

R3

R8

R9

R381

R380

R383

R382

R385

R384

R387

R386R389

R263

R260

R261

R266

R267

R264

R265

R169

R168

R165

R164

R167

R166R161

R160

R163

R162
R442

R443

R440

R441

R446

R447

R444

R445

R448

R449

R361

R345

R344

R347

R346

R341

R340

R343

R342

R226

R227

R224

R225

R349

R223
R220

R221

R45

R44

R47

R46

R41

R40

R43

R42

R49

R48

R121

R120

R123

R122

R125

R124

R127

R126

R129

R128

R228

R229

R222

R348

R154

R155 R156

R157

R150

R151

R400

R153

R158

R159
R408

R409

R309

R308

R301

R300

R303

R302

R305

R304

R307

R306

R147

R146

R413

R412

R415

R414

R275

R274

R277

R276

R271

R270

R273 R272

R416

R279

R278

R378

R379

R374

R375

R376

R377

R370

R371

R372

R373

R417

R118

R119

R110

R111

R112

R113

R114

R115

R116

R117

R288

R289

R280

R281

R282

R283

R284

R285

R286

R287

R459

R458

R455

R454

R457

R456

R451

R450

R453

R452

R239
R331

R332

R333

R334

R335

R336

R337

R231

R230

R233

R232

R235

R234

R237

R236

R58

R59

R52

R53

R50

R51

R56
R57

R54

R55

R488

R489

R486

R487

R484

R485

R482

R483

R480

R481

R248

R249

R244

R245

R246

R247

R240

R241

R242

R243

R268

R269

R411

R410

R145

R144

R143

R142

R141

R140

R419

R418

R149

R148

R89

R88

R81

R80

R83

R82

R85

R84

R87

R86

R464

R465

R466

R467

R460

R461

R462

R463

R468

R469

R16

R17

R14

R15

R12

R13

R10

R11

R18

R19

R200

R201

R202

R203

R204

R205

R206

R207

R208

R209

R369

R368

R367

R366

R365

R364

R363

R362

R405

R360

R406

R407

R404

R63

R62

R61

R60

R67

R66

R65

R64

R402

R69

R68

R403

R152

R401

R109

R108

R103

R102

R101

R100

R107

R106

R105

R104

R299

R298

R71

R293

R292

R291

R290

R297

R296

R295

R294

R190

R191

R192

R193

R194

R195

R196

R197

R198

R199

R77

R428

R429

R420

R421

R422

R423

R424

R425

R426

R427

R323

R322

R321

R320

R327

R326

R325

R324

R329

R328

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

Easy! Manageable Impossible?

I Tableau (DBTEST 2018): Queries regularly involve a few dozen joins
I SAP (BTW 2017): Largest query touches 4,598 relations

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)

Query

easy?

≤ 10K DP
entries?

corner
case?

medium?

medium?

search space
linearization

search space
linearization

solve optimally gracefully introduce
greediness to keep
optimization time

reasonable

cannot linearize

GOO/DPhyp

yes

no

yes

yes

no

no

DPhyp
LinDP++

GOO/linDP

I For performance and correctness reasons: Do not consider crossproducts

Search Space Linearization

I If the order of relations in the optimal plan is known
I Generating the optimal plan from this linearization takes polynomial time
I Optimally combine optimal solutions for subchains

A B
E F

C D

A B C E F D

Search Space Linearization

I Of course: Optimal order unknown
I But IKKBZ (TODS 3/1984, VLDB 1986): optimal left-deep plan in O(n2)

I Using IKKBZ to linearize the search space yields good bushy plans

IKKBZ

I Requires acyclic query graph (build MST if cyclic)
I Idea: Transform precedence graphs into a linear order
I Assign ranks to nodes (cost/benefit ratio)
I Successively merge child chains increasing in ranks
I Resolve contradictory sequences in child chains by merging them into a single node

IKKBZ

A B
E F

C D

A

B

E

F

C

D

3/10

6/10

9/10

4/10

3/10

A

B

E,F C

D

3/10

6/10

9/10

7/10

A

B

C

E,F

D

3/10

6/10

9/10

7/10

I Build precedence graph (here rooted in A)
I Resolve contradictory sequences in child chains by merging them into a single node

rank(E) > rank(F), but E has to precede F
I Merge child chains increasing in the nodes rank

rank(C) < rank(E,F) < rank(D)

Search Space Linearization

A B
E F

C D
A B C E F D

Query Graph Linearized Search Space

I Repeat this for each relation
I Guarantee: Final plan at least as good as the best left-deep plan

Adaptive Optimization – Achievements (SIGMOD 2018)

I Solve easy cases optimally
I Search Space Linearization:

near-optimal plans for common queries
I Gracefully tune down plan quality for

the most complex queries
I Optimize queries on hundreds of

relations in the blink of an eye
10 200 400 600 800 1,000

0

20

40

60 DBMS A

DBMS B

PostgreSQL

adaptive

relations

m
ed

ia
n

op
tim

iza
tio

n
tim

e
[s]

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)

Query

easy?

≤ 10K DP
entries?

corner
case?

medium?

medium?

search space
linearization

search space
linearization

solve optimally gracefully introduce
greediness to keep
optimization time

reasonable

cannot linearize

GOO/DPhyp

yes

no

yes

no

yes

yes

no

no

DPhyp
LinDP++

GOO/linDP

Non-Inner Joins – More Than a Corner Case

I Tableau (DBTEST 2018):
20% of the queries involve outer joins, up to 247 in a single query

I Others also report significant numbers of queries with outer joins
I Non-Inner joins impose reordering constraints
I Expressed using hyperedges (Moerkotte et al. SIGMOD 2013)

Non-Inner Joins – Search Space Linearization?

I IKKBZ only handles regular graphs
I Still: Given a proper linearization, polynomial time construction of bushy plan

I How to extend IKKBZ to generate linearizations for hypergraphs?

Precedence for Hypergraphs

A B

C

E F

D

I Hyperedge {C,D} – {E}
I Backward and forward hyperedges

Precedence for Hypergraphs – Backward Hyperedges

A B

C

E F

D

B

ACD

E

F
I Precedence DAG, multiple relations have to precede
I During merge: Ensure all precedence constraints are satisfied

Precedence for Hypergraphs – Forward Hyperedges

A B

C

E F

D

E

C,B,D

A

F

I Join towards multiple relations, no left deep solution
I Recursively linearize group {C,D}: C,B,D

I Guarantee: Final plan at least as good as the best left-deep plan if there exists one

Experiments

I More than 10 different join ordering algorithms
I 60 seconds timeout per query
I Standard benchmarks (TPC-H, TPC-DS, etc.) easily optimized by full DP
⇒ 1,000 realistic random tree queries

I Up to 100 relations each
I Random reordering constraints

Plan Quality

I Cost normalized to the best known plan per query

I LinDP++ generates clearly superior plans

Optimization Time
I Pure inner join queries vs. queries with outer joins

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

O
pt

im
iz

at
io

n
Ti

m
e

[m
s]

Algorithm
linearized DP

LinDP++

I LinDP++ handles non-inner joins as fast as inner joins

Adaptive Optimization of Very Large Join Queries (SIGMOD 2018)

Query

easy?

≤ 10K DP
entries?

corner
case?

medium?

medium?

search space
linearization

search space
linearization

solve optimally gracefully introduce
greediness to keep
optimization time

reasonable

cannot linearize

GOO/DPhyp

yes

no

yes

no

yes

yes

no

no

DPhyp
LinDP++

GOO/LinDP++

I For performance and correctness reasons: Do not consider crossproducts

Do Not Consider Crossproducts

1. Performance
I Exponential search space regardless of the query’s structure
I Most considered crossproducts will not reduce cost (A B ∈ O(|A||B|))

2. Correctness
I Crossproducts in the presence of non-inner joins can yield wrong query results

A

D

C

B
A

B C

D
6≡

D

C A

B

≡
A

C D

B

Do Not Consider Crossproducts

1. Performance
I Exponential search space regardless of the query’s structure
I Most considered crossproducts will not reduce cost (A B ∈ O(|A||B|))

2. Correctness
I Crossproducts in the presence of non-inner joins can yield wrong query results

A

D

C

B
A

B C

D

6≡
D

C A

B

≡
A

C D

B

Do Consider Some Crossproducts

I Observation: Some plans would significantly benefit from crossproducts
I TPC-DS: Crossproducts improve geometric mean of cost by 15%
I However: 82% of the queries do not benefit at all from crossproducts
I Thus: Do consider some crossproducts (ideally the important ones)

I How to efficiently discover the valid and important crossproducts?

Crossproducts

I Intuitively: Crossproduct to avoid massive intermediate results
I That is: Bypass expensive joins
I Idea: Check neighboring inner joins for opportunities

D1

F

D2
10

10M

4

F D1

D2
10M

10M

F D2

D1
10M

10M

D1 D2

F
40

10M

I If crossproduct is smaller than both intermediate results:
Add explicit edge to the query graph

Cost Improvement

TPC-DS LDBC JOB

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

4

8

12

Percentile

C
os

t I
m

pr
ov

em
en

t F
ac

to
r

Crossproducts
None

All

Heuristic

Optimization Overhead

Algorithm TPC-H TPC-DS LDBC JOB SQLite

LinDP++ 8% 6% 0 8% 0

DPhyp 12% 2.8X 0 76% 0

All Crossproducts 2.4X 214X 53X 83X 152X

I LinDP++ efficiently considers most of the relevant crossproducts

LinDP++

Optimize as fast as pure inner join queries

Efficiently consider promising crossproducts

0

30

60

90

120

10 20 30 40 50 60 70 80 90 100
Query Size (number of relations)

O
pt

im
iz

at
io

n
Ti

m
e

[m
s]

Algorithm
linearized DP

LinDP++

Generate significantly better plans

TPC-DS LDBC JOB

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

4

8

12

Percentile
C

os
t I

m
pr

ov
em

en
t F

ac
to

r

Crossproducts
None

All

Heuristic

Bonus Slides

Standard Benchmarks

I Plan Quality (normalized cost)

Algorithm TPC-H TPC-DS LDBC JOB SQLite

DPhyp 1.00 1.00 1.00 1.00 1.00

LinDP++ 1.00 1.00 1.00 1.07 1.00

I Optimization Time (ms)

Algorithm TPC-H TPC-DS LDBC JOB SQLite

DPhyp 0.4 90 1.2 227 2.2K

linearized DP 1.4 18.7 4.4 33.4 4.7K

LinDP++ 1.6 19.9 4.4 36.2 4.7K

I Standard benchmarks barely a challange for an optimizer

