



# Assessing the Impact of Driving Bans with Data Analysis

BTW 2019, Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner

#### Motivation





Fahrverbote müssen sein, denn der Feinstaub in der Luft gefährdet die Gesundheit: So argumentieren Umweltschützer und Experten. Jetzt sagen Lungenfachärzte: Das sei doch gar nicht bewiesen. Wem soll man glauben?



### Motivation – Venn Diagram of Data Science





Our domain expert:





© Eucalyp https://www.flaticon.com

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram













#### Data Sets



#### 4 data sets from luftdaten.info (covering 01.2017 – 01.2019)

| name             | type                          |
|------------------|-------------------------------|
| Dresden sds011   | particle concentration (PM10) |
| Dresden dht22    | temperature/humidity          |
| Stuttgart sds011 | particle concentration (PM10) |
| Stuttgart dht22  | temperature/humidity          |

#### 4 data sets from DWD (ftp://ftp-cdc.dwd.de/pub/CDC/)

| name         | type          |
|--------------|---------------|
| Dresden F    | wind speed    |
| Dresden GS   | sun intensity |
| Stuttgart F  | wind speed    |
| Stuttgart GS | sun intensity |



### Data Preprocessing



#### Problem 1: No concurrent time granularity in sds011 and dht22 data

| Stuttaart sds011. sensor 11 |                                |                 |                             |                                |  |  |
|-----------------------------|--------------------------------|-----------------|-----------------------------|--------------------------------|--|--|
| timostamp particlos [ug/m3] |                                |                 | Stuttgart sds011, sensor 11 |                                |  |  |
| umestump                    | purticles [µg/m <sup>s</sup> ] |                 | timestamp                   | particles [µq/m <sup>3</sup> ] |  |  |
| 2014-09-03 12:03:07         | 10                             | group by minute |                             | 10                             |  |  |
| 2014-09-03 12:04:14         | 9                              | avg(particles)  | 2014-09-03 12.03.00         | 10                             |  |  |
| 2014 00 02 12:04:57         | 0                              | 5.1 /           | 2014-09-03 12:04:00         | 8.5                            |  |  |
| 2014-09-03 12.04.37         | 0                              |                 | 2014-09-03 12:05:00         | 7                              |  |  |
| 2014-09-03 12:05:10         | 7                              |                 |                             |                                |  |  |



### Data Preprocessing



#### Problem 2: Separate data set for each sensor type.

| Stuttgart sds011, sensor 11        |                 |              | Stuttgart dht22, sensor 65 |               |                |     |           |      |
|------------------------------------|-----------------|--------------|----------------------------|---------------|----------------|-----|-----------|------|
| timestamp                          | particles [µg/m | 3]           | timesta                    | mp            | humidity [%]   | ten | nperature | [°C] |
| 2014-09-03 12:03:00                |                 | 10           | 2014-0                     | 9-03 12:03:00 | 50             |     |           | 18   |
| 2014-09-03 12:04:00                | 8               | 3.5          | 2014-0                     | 9-03 12:04:00 | 52             |     |           | 17.8 |
| ⊨ join on timestamp (and location) |                 |              |                            |               |                |     |           |      |
| Stuttgart                          |                 |              |                            |               |                |     |           |      |
| timestamp                          | sensor_id       | particles [µ | ug/m³]                     | humidity [%]  | temperature [° | C]  | sensor_d  | ht   |
| 2014-09-03 12:03:0                 | 0 11            |              | 10                         | 50            |                | 18  | (         | 65   |
| 2014-09-03 12:04:0                 | 0 11            |              | 8.5                        | 52            | 17             | 7.8 | (         | 65   |



### Sensor reliability



If the humidity is over 70%, the particle concentration read cannot be seen as reliable. (from the SDS011 Laser PM2.5 Sensor specification)



© DDpix https://www.ddpix.de/wp-content/gallery/dresden-von-oben/ 00551.jpg

#### Data set reduction Stuttgart: by 44%



#### Sensor reliability











### **Time Series Decomposition**



#### Segment a time series into trend, seasonality, and noise [2]



Sensor 7561 decomposition

[2] Cleveland et al., STL: A Seasonal-Trend Decomposition, 1990

#### Seasonal Patterns



#### Differences between city centers



#### **Seasonal Patterns**



#### Differences between city centers





### Expert Knowledge

TECHNISCHE UNIVERSITÄT DRESDEN



The rush hour peaks are really the sun rise and sun set because PM10 directly correlates with the gradient of the global sun intensity and the wind speed [1].





### Expert Knowledge



The time of sun rise and sun set directly influences PM10 as seen over different months









### Graphical Interpolation of Sensor Data



Cubic interpolation for transforming sparse 3D data to smoothed 3D data









Average particle concentration (PM10) in 2018





### **Geographical Patterns**



Average particle concentration (PM10) before and after the driving ban in Stuttgart





### **Geographical Patterns**



Average particle concentration (PM10) before and after the driving ban in Stuttgart



Data: DWD ftp://ftp-cdc.dwd.de/pub/CDC/grids\_germany/monthly/precipitation/

#### Expert Knowledge

UNIVERSITÄT DRESDEN

Precipitation rate times number of rainy days in Stuttgart

#### Dec 2018











### Forecasting with Neural Networks



Modeling external influences to predict PM10 concentration





[1] Klingner, Matthias; Sähn, Elke: Prediction of PM10 concentration on the basis of high resolution weather forecasting, 2008

### Forecasting with Neural Networks

TECHNISCHE UNIVERSITÄT DRESDEN



Prediction of PM10 concentration with multi-layer perceptron.



[1] Klingner, Matthias; Sähn, Elke: Prediction of PM10 concentration on the basis of high resolution weather forecasting, 2008

### Long short-term memory (LSTM)



#### Prediction of PM10 with humidity and temperature with lag 1















#### Average particle concentration (PM10) in 2018

Dresden







### **Geographical Patterns**



#### Average particle concentration (PM10) in 2018

Dresden







### Conclusion

#### Summary

- What seems to be rush hours are spurious correlations
- External influences other than traffic have a more significant impact on the particle concentration
- No measurable impact through driving bans on particle concentration due to the strong influences of weather and other factors
- Always ask an expert!

## Dresden Database

#### Outlook

- Standardized sensor network
- Identification of other external factors (environmental/human)
- Research on better data preparation to get exact anthropogenic influence
- Combination of other analysis techniques

