
Lock-free Data Structures
for

Data Stream Processing

ALEXANDER BAUMSTARK

Agenda
1. Motivation

2. Contribution

3. Lock-free Design Principles

4. Data Stream Processing
1. Tuple Exchange

2. Symmetric Hash Join

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

2

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

3

Motivation

51
81

124

179

272

403

0

50

100

150

200

250

300

350

400

450

2016 2017 2018* 2019* 2020* 2021*

D
a
te

n
v
o

lu
m

e
n

 in
 E

x
a

b
y
te

Big-Data-Datenmenge in Rechenzentren

weltweit; 2016 bis 2021 (in Exabyte)

• Cisco Global Cloud Index, 2016-2021

Ray Kurzweil, „The Singularity is near: when

humans transcend Biology. „Moore‘s law“

• https://www.extremetech.com/extreme/210872-
extremetech-explains-what-is-moores-law

Requirements for Data Processing
•Maximum utilization of parallelism

•Scalable and portable algorithms

•High availability

→ Multithreading

•Instantaneous processing on the fly

•high throughput

•Low latency

→ Data Stream Processing

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

4

Synchronization
•Goal: Achieve concurrency and consistency

•Two techniques
• Blocking

• Non-blocking

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

5

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

6

„Lock-free Databases“
"From the perspective of the applications written on top of RethinkDB,
the system is essentially lock-free— you can run an hour-long
analytics query on a live system without blocking any real-time reads
or writes." - RethinkDB FAQ

"MemSQL’s storage engine uses multi-version concurrency control
with lock-free skip lists and lock-free hash tables which allow highly
concurrent reads and writes at very high throughput." - MemSQL FAQ

Contribution
1. Lock-free Tuple Exchange Algorithm

2. Lock-free Multi-Hashmap Design

3. Improved algorithm in Pipefabric with lock-free synchronization
◦ Tuple Exchange

◦ Symmetric Hash Join

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

7

Data Stream Processing
•Requirements: High throughput and low latency

•Achieved with parallelization of tasks and operators

Pipefabric

•Data Stream Processing Engine

•Databases and Information Systems Group/TU Ilmenau

•Supports different protocols: ZeroMQ, MQTT, AMQP

•Join Operators, Window-based Operators

•Concurrent operators and algorithms use blocking synchronization

→reduced degree of parallelism

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

8

Design Principles of Lock-free Synchronization
•Key = Atomic Instructions/Read-Modify-Write Operation

•Transaction Properties
• ACID
• Linearizability (=Atomic Consistency)

•Atomic Operations:
• Compare and Swap (CAS)
• Load-Linked/Store-Conditional (LL/SC)
• Fetch and Op (FAO), 𝑂𝑝 𝜖 {𝐴𝑑𝑑, 𝑆𝑢𝑏, 𝑂𝑟, 𝑋𝑜𝑟}

→Guarantee that one out of many contending threads will make progress
in a finite number of steps.

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

9

Atomic Operation
boolean CAS(value*, value_expected*, new_value)

•Only replace with new value if current value is equal expected value
• returns false if comparison failed; true otherwise

•Techniques to synchronize
• Loop until success: refresh current and expected value

•ABA-Problem
• CAS Operation can’t observe all modification in the interim

• E.g. A → B → A

• Solutions: Tagged-Pointers, Hazard-Pointers, Multi-CAS

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

10

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

11

Classification

Wait-free: guarantees that every call finishes its execution in a finite number of
steps.

Lock-free: guarantees that at least one thread is doing progress on its work.

Non-blocking: failure or suspension cannot cause failure or suspension of
another thread.

Tuple Exchange
•Threads need to exchange tuples
• Window Operator

• Hash Join

•Single-Producer/Single-Consumer
• Data Structure: Queue

•Pipefabric
• Uses STL Queue

• Locks with condition variables

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

12

Tuple Exchange
Lock-free SPSC Queue → Ringbuffer (fixed sized array)

•Push & Pop on different locations
• Atomic load/store operations sufficient

• + memory order

•Consistency check before each store

•Better results than node-based

(true unbounded) implementations

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

13

Head

Tail

Tuple Exchange Benchmark
•Benchmark with 3 non-blocking queue implementations

◦ Boost SPSC Queue

◦ Intel Threading Building Blocks Reader-Writer Queue

◦ Facebook Folly Producer-Consumer Queue

•2 Benchmarks: Bounded (1024) + „Unbounded“ (Maximum size)

•Producer: 10 Million push Operations

•Consumer: pop until 10 Million tuples

•System: Intel Xeon Phi (Knights Landing) 7210
• 64 Cores / 256 Threads @ 1.3-1.5GHz

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

14

Tuple Exchange Benchmark

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

15

Symmetric Hash Join
1. Input: two tuple streams

2. Each tuple (key) is hashed to the appropriate hashmap

3. Hashmaps probe each entry with other

4. Matched entries continued as resulting stream

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

16

Symmetric Hash Join
•Base: Multi-Hashmap

•Support same key elements

•Implementation in Pipefabric:
• based STL unordered multimap

• Threads locks the entire map to operate

• no real parallelism with higher thread numbers

→Lock-free Multi-Hashmap

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

17

Lock-free Multi-Hashmap Design

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

18

•Basis: Lock-free Linked List

Main Method: Search Procedure
◦ Searches for the position of the left and right node to delete or insert node between then
◦ Deletes logically deleted marked nodes

◦ no ABA-problem

35 36 474340* 44

42Left Node
Right Node

Marked Node

Harris, Timothy L. "A pragmatic implementation of non-blocking linked-lists." International
Symposium on Distributed Computing. Springer, Berlin, Heidelberg, 2001.

Lock-free Multi-Hashmap Design
•Multi-Hashmap
• Each hash points to a linked list

• Each node points to a further list (Bucket)

•Array structure needs initialization!

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

19

 is

 is

 is

 alue

 alue

 alue

 alue

 is array

 al

Symmetric Hash Join Benchmark
•2 lock-free implementations
• Linked Linked based
• Skip List based

•Additional blocking (fine-grained) implementation
• based on unordered_multimap structure from Intel TBB
• Equivalent to STL unordered_multimap

•Benchmark:
• 2-256 threads
• equal distributed 10.000 tuples

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

20

T T T T

Threa Threa

Symmetric Hash Join Benchmark

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

21

Conclusion
•Scalable and robust algorithms

•Guarantee for progress

•Lock-free data structures fulfill the requirements
◦ High throughput

◦ Low latency

•Overhead for additional structures (e.g., Marked Pointer)

•Need non-blocking memory management

•Fine-grained locking can achieve same performance results

LOCK-FREE DATA STRUCTURES FOR DATA STREAM PROCESSING -
ALEXANDER BAUMSTARK

22

